Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1113648

A Survey of Methods and Technologies for Congestion Estimation Based on Multisource Data Fusion


Cvetek, Dominik; Muštra, Mario; Jelušić, Niko; Tišljarić, Leo
A Survey of Methods and Technologies for Congestion Estimation Based on Multisource Data Fusion // Applied Sciences-Basel, 11 (2021), 5; 2306, 19 doi:10.3390/app11052306 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1113648 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Survey of Methods and Technologies for Congestion Estimation Based on Multisource Data Fusion

Autori
Cvetek, Dominik ; Muštra, Mario ; Jelušić, Niko ; Tišljarić, Leo

Izvornik
Applied Sciences-Basel (2076-3417) 11 (2021), 5; 2306, 19

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
traffic congestion ; multisource data fusion ; traffic flow modeling ; congestion estimation ; traffic state estimation

Sažetak
Traffic congestion occurs when traffic demand is greater than the available network capacity. It is characterized by lower vehicle speeds, increased travel times, arrival unreliability, and longer vehicular queueing. Congestion can also impose a negative impact on the society by decreasing the quality of life with increased pollution, especially in urban areas. To mitigate the congestion problem, traffic engineers and scientists need quality, comprehensive, and accurate data to estimate the state of traffic flow. Various types of data collection technologies have different advantages and disadvantages as well as data characteristics, such as accuracy, sampling frequency, and geospatial coverage. Multisource data fusion increases the accuracy and provides a comprehensive estimation of the performance of traffic flow on a road network. This paper presents a literature overview related to the estimation of congestion and prediction based on the data collected from multiple sources. An overview of data fusion methods and congestion indicators used in the literature for traffic state and congestion estimation is given. Results of these methods are analyzed, and a disseminative analysis of the advantages and disadvantages of surveyed methods is presented.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Tehnologija prometa i transport



POVEZANOST RADA


Projekti:
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)

Ustanove:
Fakultet prometnih znanosti, Zagreb

Profili:

Avatar Url Mario Muštra (autor)

Avatar Url Leo Tišljarić (autor)

Avatar Url Niko Jelušić (autor)

Avatar Url Dominik Cvetek (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.mdpi.com

Citiraj ovu publikaciju:

Cvetek, Dominik; Muštra, Mario; Jelušić, Niko; Tišljarić, Leo
A Survey of Methods and Technologies for Congestion Estimation Based on Multisource Data Fusion // Applied Sciences-Basel, 11 (2021), 5; 2306, 19 doi:10.3390/app11052306 (međunarodna recenzija, članak, znanstveni)
Cvetek, D., Muštra, M., Jelušić, N. & Tišljarić, L. (2021) A Survey of Methods and Technologies for Congestion Estimation Based on Multisource Data Fusion. Applied Sciences-Basel, 11 (5), 2306, 19 doi:10.3390/app11052306.
@article{article, author = {Cvetek, Dominik and Mu\v{s}tra, Mario and Jelu\v{s}i\'{c}, Niko and Ti\v{s}ljari\'{c}, Leo}, year = {2021}, pages = {19}, DOI = {10.3390/app11052306}, chapter = {2306}, keywords = {traffic congestion, multisource data fusion, traffic flow modeling, congestion estimation, traffic state estimation}, journal = {Applied Sciences-Basel}, doi = {10.3390/app11052306}, volume = {11}, number = {5}, issn = {2076-3417}, title = {A Survey of Methods and Technologies for Congestion Estimation Based on Multisource Data Fusion}, keyword = {traffic congestion, multisource data fusion, traffic flow modeling, congestion estimation, traffic state estimation}, chapternumber = {2306} }
@article{article, author = {Cvetek, Dominik and Mu\v{s}tra, Mario and Jelu\v{s}i\'{c}, Niko and Ti\v{s}ljari\'{c}, Leo}, year = {2021}, pages = {19}, DOI = {10.3390/app11052306}, chapter = {2306}, keywords = {traffic congestion, multisource data fusion, traffic flow modeling, congestion estimation, traffic state estimation}, journal = {Applied Sciences-Basel}, doi = {10.3390/app11052306}, volume = {11}, number = {5}, issn = {2076-3417}, title = {A Survey of Methods and Technologies for Congestion Estimation Based on Multisource Data Fusion}, keyword = {traffic congestion, multisource data fusion, traffic flow modeling, congestion estimation, traffic state estimation}, chapternumber = {2306} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font