Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1113632

CroP: Color Constancy Benchmark Dataset Generator


Banić, Nikola; Koščević, Karlo; Subašić, Marko; Lončarić, Sven
CroP: Color Constancy Benchmark Dataset Generator // Proceedings of the 2020 4th International Conference on Vision, Image and Signal Processing (ICVISP 2020)
New York (NY): Association for Computing Machinery (ACM), 2020. 4, 9 doi:10.1145/3448823.3448829 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1113632 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
CroP: Color Constancy Benchmark Dataset Generator

Autori
Banić, Nikola ; Koščević, Karlo ; Subašić, Marko ; Lončarić, Sven

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 2020 4th International Conference on Vision, Image and Signal Processing (ICVISP 2020) / - New York (NY) : Association for Computing Machinery (ACM), 2020

ISBN
978-1-4503-8953-2

Skup
2020 2nd International Symposium on Computer Graphics, Multimedia, and Image Processing (CGMIP 2020)

Mjesto i datum
Bangkok, Tajland, 09.12.2020. - 11.12.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
color constancy ; data augmentation ; illumination estimation ; image dataset ; white balancing

Sažetak
Implementing color constancy as a pre-processing step in contemporary digital cameras is of significant importance as it removes the influence of scene illumination on object colors. Several benchmark color constancy datasets have been created for the purpose of developing and testing new color constancy methods. However, they all have numerous drawbacks including a small number of images, erroneously extracted ground-truth illuminations, long histories of misuses, violations of their stated assumptions, etc. To overcome such and similar problems, in this paper a color constancy benchmark dataset generator is proposed. For a given camera sensor it enables generation of any number of realistic raw images taken in a subset of the real world, namely images of printed photographs. Datasets with such images share many positive features with other existing real-world datasets, while some of the negative features are completely eliminated. The generated images can be successfully used to train methods that afterward achieve high accuracy on real-world datasets. This opens the way for creating large enough datasets for advanced deep learning techniques. Experimental results are presented and discussed. The source code is available at http://www.fer.unizg.hr/ipg/resources/colorconsta ncy/.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-2092 - Metode i algoritmi za poboljšanje slika u boji u stvarnom vremenu (PerfectColor) (Lončarić, Sven, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Poveznice na cjeloviti tekst rada:

doi dl.acm.org

Citiraj ovu publikaciju:

Banić, Nikola; Koščević, Karlo; Subašić, Marko; Lončarić, Sven
CroP: Color Constancy Benchmark Dataset Generator // Proceedings of the 2020 4th International Conference on Vision, Image and Signal Processing (ICVISP 2020)
New York (NY): Association for Computing Machinery (ACM), 2020. 4, 9 doi:10.1145/3448823.3448829 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Banić, N., Koščević, K., Subašić, M. & Lončarić, S. (2020) CroP: Color Constancy Benchmark Dataset Generator. U: Proceedings of the 2020 4th International Conference on Vision, Image and Signal Processing (ICVISP 2020) doi:10.1145/3448823.3448829.
@article{article, author = {Bani\'{c}, Nikola and Ko\v{s}\v{c}evi\'{c}, Karlo and Suba\v{s}i\'{c}, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2020}, pages = {9}, DOI = {10.1145/3448823.3448829}, chapter = {4}, keywords = {color constancy, data augmentation, illumination estimation, image dataset, white balancing}, doi = {10.1145/3448823.3448829}, isbn = {978-1-4503-8953-2}, title = {CroP: Color Constancy Benchmark Dataset Generator}, keyword = {color constancy, data augmentation, illumination estimation, image dataset, white balancing}, publisher = {Association for Computing Machinery (ACM)}, publisherplace = {Bangkok, Tajland}, chapternumber = {4} }
@article{article, author = {Bani\'{c}, Nikola and Ko\v{s}\v{c}evi\'{c}, Karlo and Suba\v{s}i\'{c}, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2020}, pages = {9}, DOI = {10.1145/3448823.3448829}, chapter = {4}, keywords = {color constancy, data augmentation, illumination estimation, image dataset, white balancing}, doi = {10.1145/3448823.3448829}, isbn = {978-1-4503-8953-2}, title = {CroP: Color Constancy Benchmark Dataset Generator}, keyword = {color constancy, data augmentation, illumination estimation, image dataset, white balancing}, publisher = {Association for Computing Machinery (ACM)}, publisherplace = {Bangkok, Tajland}, chapternumber = {4} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font