Pregled bibliografske jedinice broj: 1113542
Evaluation of Generative Adversarial Network for Human Face Image Synthesis
Evaluation of Generative Adversarial Network for Human Face Image Synthesis // SoftCOM 2020: 28th International Conference on Software, Telecommunications and Computer Networks: Virtual Conference: Proceedings / Begušić, Dinko ; Rožić, Nikola ; Radić, Joško ; Šarić, Matko (ur.).
Split: Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2020. str. 89-95 doi:10.23919/SoftCOM50211.2020.9238203 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1113542 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Evaluation of Generative Adversarial Network for
Human Face Image Synthesis
Autori
Marin, Ivana ; Gotovac, Sven ; Russo, Mladen
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
SoftCOM 2020: 28th International Conference on Software, Telecommunications and Computer Networks: Virtual Conference: Proceedings
/ Begušić, Dinko ; Rožić, Nikola ; Radić, Joško ; Šarić, Matko - Split : Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2020, 89-95
ISBN
978-953-290-099-6
Skup
28th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2020
Mjesto i datum
Hvar, Hrvatska; Split, Hrvatska, 17.09.2020. - 19.09.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Evaluation ; Fréchet Inception Distance ; Generative Adversarial Networks ; Inception Score ; Latent Space Exploration
Sažetak
Meaningful and objective evaluation metric for fair model comparison is crucial for further scientific progress in the field of deep generative modeling. Despite the significant progress and impressive results obtained by Generative Adversarial Networks in recent years, the problem of their objective evaluation remains open. In this paper, we give an overview of qualitative and quantitative evaluation measures most frequently used to assess the quality of generated images and learned representations of an adversarial network together with the empirical comparison of their performance on the problem of human face image synthesis. It is shown that evaluation scores of the two most widely accepted quantitative metrics, Inception Score (IS) and Fréchet Inception Distance (FID), do not correlate. The IS is not an appropriate evaluation metric for a given problem, but FID shows good performance that correlates well with a visual inspection of generated samples. The qualitative evaluation can be used to complement results obtained with quantitative evaluation - to gain further insight into the learned data representation and detect possible overfitting.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Prirodoslovno-matematički fakultet, Split,
Sveučilište u Splitu
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus