Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1113439

Dense open-set recognition with synthetic outliers generated by Real NVP


Grcić, Matej; Bevandić, Petra; Šegvić, Siniša
Dense open-set recognition with synthetic outliers generated by Real NVP // Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
online, 2021. str. 133-143 doi:10.5220/0010260701330143 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1113439 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Dense open-set recognition with synthetic outliers generated by Real NVP

Autori
Grcić, Matej ; Bevandić, Petra ; Šegvić, Siniša

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications / - , 2021, 133-143

Skup
16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications

Mjesto i datum
Online, 08.02.2021. - 10.02.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Computer vision, semantic segmentation, Outlier detection

Sažetak
Today's deep models are often unable to detect inputs which do not belong to the training distribution. This gives rise to confident incorrect predictions which could lead to devastating consequences in many important application fields such as healthcare and autonomous driving. Interestingly, both discriminative and generative models appear to be equally affected. Consequently, this vulnerability represents an important research challenge. We consider an outlier detection approach based on discriminative training with jointly learned synthetic outliers. We obtain the synthetic outliers by sampling an RNVP model which is jointly trained to generate datapoints at the border of the training distribution. We show that this approach can be adapted for simultaneous semantic segmentation and dense outlier detection. We present image classification experiments on CIFAR-10, as well as semantic segmentation experiments on three existing datasets (StreetHazards, WD-Pascal, Fishyscapes Lost & Found), and one contributed dataset. Our models perform competitively with respect to the state of the art despite producing predictions with only one forward pass.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Petra Bevandić (autor)

Avatar Url Siniša Šegvić (autor)

Avatar Url Matej Grcić (autor)

Poveznice na cjeloviti tekst rada:

doi arxiv.org www.insticc.org

Citiraj ovu publikaciju:

Grcić, Matej; Bevandić, Petra; Šegvić, Siniša
Dense open-set recognition with synthetic outliers generated by Real NVP // Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
online, 2021. str. 133-143 doi:10.5220/0010260701330143 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Grcić, M., Bevandić, P. & Šegvić, S. (2021) Dense open-set recognition with synthetic outliers generated by Real NVP. U: Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications doi:10.5220/0010260701330143.
@article{article, author = {Grci\'{c}, Matej and Bevandi\'{c}, Petra and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2021}, pages = {133-143}, DOI = {10.5220/0010260701330143}, keywords = {Computer vision, semantic segmentation, Outlier detection}, doi = {10.5220/0010260701330143}, title = {Dense open-set recognition with synthetic outliers generated by Real NVP}, keyword = {Computer vision, semantic segmentation, Outlier detection}, publisherplace = {online} }
@article{article, author = {Grci\'{c}, Matej and Bevandi\'{c}, Petra and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2021}, pages = {133-143}, DOI = {10.5220/0010260701330143}, keywords = {Computer vision, semantic segmentation, Outlier detection}, doi = {10.5220/0010260701330143}, title = {Dense open-set recognition with synthetic outliers generated by Real NVP}, keyword = {Computer vision, semantic segmentation, Outlier detection}, publisherplace = {online} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font