Pregled bibliografske jedinice broj: 1113379
Wrapper-based feature selection: how important is the wrapped classifier?
Wrapper-based feature selection: how important is the wrapped classifier? // Proceedings of the 4th International Conference on Smart Systems and Technologies (SST 2020) / Žagar, Drago ; Martinović, Goran ; Rimac Drlje, Snježana ; Galić, Irena (ur.).
Osijek: Fakultet elektrotehnike, računarstva i informacijskih tehnologija Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2020. str. 97-105 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1113379 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Wrapper-based feature selection: how important is the wrapped classifier?
Autori
Bajer, Dražen ; Dudjak, Mario ; Zorić, Bruno
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 4th International Conference on Smart Systems and Technologies (SST 2020)
/ Žagar, Drago ; Martinović, Goran ; Rimac Drlje, Snježana ; Galić, Irena - Osijek : Fakultet elektrotehnike, računarstva i informacijskih tehnologija Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2020, 97-105
ISBN
978-1-7281-9759-6
Skup
International Conference on Smart Systems and Technologies 2020 (SST 2020)
Mjesto i datum
Osijek, Hrvatska, 14.10.2020. - 16.10.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
classification, differential evolution, dimensionality reduction, feature selection, wrapper methods
Sažetak
Wrapper-based feature (subset) selection is a frequently used approach for dataset dimensionality reduction, especially when dealing with classification problems. The choice of wrapper is at the forefront of these approaches, whilst the choice of the classifier is typically based on its simplicity as to reduce the computational cost. Since the search is guided by the selected classifier, the same one is also later used for independent testing. This raises the question of how well such feature subsets are suited for other types of classifiers. In other words, can one classifier be used for finding feature subsets that are also effective for others? An investigation into this matter was performed by testing and analysing the utility of subsets found by one classifier with respect to other classifiers. It hints at the importance of classifier choice since some models, whilst used inside the wrapper, can solely conform the dataset to themselves, whilst others are less susceptible to this issue. Consequently, an insight into the robustness of the employed classifiers was gained as well.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek