Pregled bibliografske jedinice broj: 1113373
Wrapper-based feature selection via differential evolution: benchmarking different discretisation techniques
Wrapper-based feature selection via differential evolution: benchmarking different discretisation techniques // Proceedings of the 4th International Conference on Smart Systems and Technologies (SST 2020) / Žagar, Drago ; Martinović, Goran ; Rimac Drlje, Snježana ; Galić, Irena (ur.).
Osijek: Fakultet elektrotehnike, računarstva i informacijskih tehnologija Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2020. str. 89-96 doi:10.1109/SST49455.2020.9263700 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1113373 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Wrapper-based feature selection via differential evolution: benchmarking different discretisation techniques
Autori
Zorić, Bruno ; Bajer, Dražen ; Dudjak, Mario
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 4th International Conference on Smart Systems and Technologies (SST 2020)
/ Žagar, Drago ; Martinović, Goran ; Rimac Drlje, Snježana ; Galić, Irena - Osijek : Fakultet elektrotehnike, računarstva i informacijskih tehnologija Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2020, 89-96
ISBN
978-1-7281-9759-6
Skup
International Conference on Smart Systems and Technologies 2020 (SST 2020)
Mjesto i datum
Osijek, Hrvatska, 14.10.2020. - 16.10.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
bio-inspired optimisation ; classification ; discretisation ; feature selection ; wrapper
Sažetak
Wrapper-based feature selection approaches reliant on different bio-inspired optimisation algorithms are both effective and widely employed when dealing with classification problems. These algorithms have proven themselves as successful wrappers in finding good feature subsets. However, as a large number of them is defined for the real domain, the small detail of their adaptation to the discrete domain of feature selection is often overlooked. This holds especially true for differential evolution, a prominent wrapper choice among bioinspired optimisation algorithms. As distinct discretisation techniques have been proposed in the literature, the question of which one to incorporate in differential evolution and under which circumstances remains rather unanswered. This paper attempts to provide some answers in that regard by studying the incorporation of discretisation techniques into differential evolution and their influence on the quality of attained feature subsets. Given their differences, some suggestions concerning the selection of discretisation techniques are given based on the obtained results.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek