Pregled bibliografske jedinice broj: 1113061
On Urinary Bladder Cancer Diagnosis: Utilization of Deep Convolutional Generative Adversarial Networks for Data Augmentation
On Urinary Bladder Cancer Diagnosis: Utilization of Deep Convolutional Generative Adversarial Networks for Data Augmentation // Biology, 10 (2021), 3; 175, 27 doi:10.3390/biology10030175 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1113061 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On Urinary Bladder Cancer Diagnosis:
Utilization
of Deep Convolutional Generative Adversarial
Networks for Data Augmentation
Autori
Lorencin, Ivan ; Baressi Šegota, Sandi ; Anđelić, Nikola ; Mrzljak, Vedran ; Ćabov, Tomislav ; Španjol, Josip ; Car, Zlatan
Izvornik
Biology (2079-7737) 10
(2021), 3;
175, 27
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
AlexNet ; data augmentation ; deep convolutional generative adversarial networks ; urinary bladder cancer ; VGG16
Sažetak
Urinary bladder cancer is one of the most common urinary tract cancers. Standard diagnosis procedure can be invasive and time- consuming. For these reasons, procedure called optical biopsy is introduced. This procedure allows in-vivo evaluation of bladder mucosa without the need for biopsy. Although less invasive and faster, accuracy is often lower. For this reason, machine learning (ML) algorithms are used to increase its accuracy. The issue with ML algorithms is their sensitivity to the amount of input data. In medicine, collection can be time-consuming due to a potentially low number of patients. For these reasons, data augmentation is performed, usually through a series of geometric variations of original images. While such images improve classification performance, the number of new data points and the insight they provide is limited. These issues are a motivation for the application of novel augmentation methods. Authors demonstrate the use of Deep Convolutional Generative Adversarial Networks (DCGAN) for the generation of images. Augmented datasets used for training of commonly used Convolutional Neural Network- based (CNN) architectures (AlexNet and VGG-16) show a significcan performance increase for AlexNet, where AUCmicro reaches values up to 0.99. Average and median results of networks used in grid-search increases. These results point towards the conclusion that GAN-based augmentation has decreased the networks sensitivity to hyperparemeter change.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Temeljne tehničke znanosti, Temeljne medicinske znanosti, Javno zdravstvo i zdravstvena zaštita
POVEZANOST RADA
Projekti:
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
Ustanove:
Medicinski fakultet, Rijeka,
Tehnički fakultet, Rijeka,
Klinički bolnički centar Rijeka,
Fakultet dentalne medicine, Rijeka
Profili:
Josip Španjol
(autor)
Zlatan Car
(autor)
Tomislav Ćabov
(autor)
Vedran Mrzljak
(autor)
Nikola Anđelić
(autor)
Sandi Baressi Šegota
(autor)
Ivan Lorencin
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus