Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1111963

The vertex algebras $\mathcal V^{;;;(p)};;;$ and $ \mathcal R^{;;; (p)};;;$


Adamović, Dražen; Creutzig, Thomas; Genra, Naoki; Yang, Jinwei
The vertex algebras $\mathcal V^{;;;(p)};;;$ and $ \mathcal R^{;;; (p)};;;$ // Communications in mathematical physics, 383 (2021), 1207-1241 doi:10.1007/s00220-021-03950-1 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1111963 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The vertex algebras $\mathcal V^{;;;(p)};;;$ and $ \mathcal R^{;;; (p)};;;$

Autori
Adamović, Dražen ; Creutzig, Thomas ; Genra, Naoki ; Yang, Jinwei

Izvornik
Communications in mathematical physics (0010-3616) 383 (2021); 1207-1241

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
vertex algebras ; logarithmic vertex algebras

Sažetak
The vertex algebras V(p) and R(p) introduced in Adamović (Transform Groups 21(2):299–327, 2016) are very interesting relatives of the well-known triplet algebras of logarithmic CFT. The algebra V(p) (respectively, R(p)) is a large extension of the simple affine vertex algebra Lk(sl2) (respectively, Lk(sl2) times a Heisenberg algebra), at level k=−2+1/p for positive integer p. Particularly, the algebra V(2) is the simple small N=4 superconformal vertex algebra with c=−9, and R(2) is L−3/2(sl3). In this paper, we derive structural results of these algebras and prove various conjectures coming from representation theory and physics. We show that SU(2) acts as automorphisms on V(p) and we decompose V(p) as an Lk(sl2)-module and R(p) as an Lk(gl2)-module. The decomposition of V(p) shows that V(p) is the large level limit of a corner vertex algebra appearing in the context of S-duality. We also show that the quantum Hamiltonian reduction of V(p) is the logarithmic doublet algebra A(p) introduced in Adamović and Milas (Contemp Math 602:23–38, 2013), while the reduction of R(p) yields the B(p)-algebra of Creutzig et al. (Lett Math Phys 104(5):553–583, 2014). Conversely, we realize V(p) and R(p) from A(p) and B(p) via a procedure that deserves to be called inverse quantum Hamiltonian reduction. As a corollary, we obtain that the category KLk of ordinary Lk(sl2)-modules at level k=−2+1/p is a rigid vertex tensor category equivalent to a twist of the category Rep(SU(2)). This finally completes rigid braided tensor category structures for Lk(sl2) at all complex levels k. We also establish a uniqueness result of certain vertex operator algebra extensions and use this result to prove that both R(p) and B(p) are certain non-principal W-algebras of type A at boundary admissible levels. The same uniqueness result also shows that R(p) and B(p) are the chiral algebras of Argyres-Douglas theories of type (A1, D2p) and (A1, A2p−3).

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
--KK.01.1.1.01.0004 - Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri (QuantiXLie) (Buljan, Hrvoje; Pandžić, Pavle) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Dražen Adamović (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com doi.org

Citiraj ovu publikaciju:

Adamović, Dražen; Creutzig, Thomas; Genra, Naoki; Yang, Jinwei
The vertex algebras $\mathcal V^{;;;(p)};;;$ and $ \mathcal R^{;;; (p)};;;$ // Communications in mathematical physics, 383 (2021), 1207-1241 doi:10.1007/s00220-021-03950-1 (međunarodna recenzija, članak, znanstveni)
Adamović, D., Creutzig, T., Genra, N. & Yang, J. (2021) The vertex algebras $\mathcal V^{;;;(p)};;;$ and $ \mathcal R^{;;; (p)};;;$. Communications in mathematical physics, 383, 1207-1241 doi:10.1007/s00220-021-03950-1.
@article{article, author = {Adamovi\'{c}, Dra\v{z}en and Creutzig, Thomas and Genra, Naoki and Yang, Jinwei}, year = {2021}, pages = {1207-1241}, DOI = {10.1007/s00220-021-03950-1}, keywords = {vertex algebras, logarithmic vertex algebras}, journal = {Communications in mathematical physics}, doi = {10.1007/s00220-021-03950-1}, volume = {383}, issn = {0010-3616}, title = {The vertex algebras $\mathcal V\^{}{;;;(p)};;;$ and $ \mathcal R\^{}{;;; (p)};;;$}, keyword = {vertex algebras, logarithmic vertex algebras} }
@article{article, author = {Adamovi\'{c}, Dra\v{z}en and Creutzig, Thomas and Genra, Naoki and Yang, Jinwei}, year = {2021}, pages = {1207-1241}, DOI = {10.1007/s00220-021-03950-1}, keywords = {vertex algebras, logarithmic vertex algebras}, journal = {Communications in mathematical physics}, doi = {10.1007/s00220-021-03950-1}, volume = {383}, issn = {0010-3616}, title = {The vertex algebras $\mathcal V\^{}{;;;(p)};;;$ and $ \mathcal R\^{}{;;; (p)};;;$}, keyword = {vertex algebras, logarithmic vertex algebras} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font