Pregled bibliografske jedinice broj: 1111587
Existence and uniqueness of group structures on covering spaces over groups
Existence and uniqueness of group structures on covering spaces over groups // Fundamenta mathematicae, 238 (2017), 3; 241-267 doi:10.4064/fm990-10-2016 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1111587 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Existence and uniqueness of group structures on covering spaces over groups
Autori
Eda, Katsuya ; Matijević, Vlasta
Izvornik
Fundamenta mathematicae (0016-2736) 238
(2017), 3;
241-267
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
topological group ; compact group ; locally compact group ; abelian group ; compactly connected space ; locally compactly connected space ; covering map ; overlay map ; covering homomorphism
Sažetak
Let f:X->Y be a covering map from a connected space X onto a topological group Y and let x_0 be a point of X such that f(x_0) is the identity of Y. We examine if there exists a group operation on X which makes X a topological group with the identity x_0 and f a homomorphism of groups. We prove that the answer is positive in two particular cases: if f is an overlay map over a locally compact group or if Y is locally compactly connected. In this way we generalize previously obtained results for overlay maps over compact groups and covering maps over locally path-connected groups. Furthermore, we prove that in both cases the group structure on X is unique.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Split
Profili:
Vlasta Matijević
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus