Pregled bibliografske jedinice broj: 1111403
The general integral form of Jensen's inequality
The general integral form of Jensen's inequality // Book of Abstracts of 3rd International Conference on Mathematical and Related Sciences: Current Trends and Developments / Set, Erhan ; Akdemir, Ahmet Ocak ; Ekinci, Alper (ur.).
online: Ordu University Turkey, 2020. str. 4-4 (plenarno, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1111403 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The general integral form of Jensen's inequality
Autori
Pavić, Zlatko
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Book of Abstracts of 3rd International Conference on Mathematical and Related Sciences: Current Trends and Developments
/ Set, Erhan ; Akdemir, Ahmet Ocak ; Ekinci, Alper - Online : Ordu University Turkey, 2020, 4-4
ISBN
978-625-409-894-9
Skup
3rd International Conference on Mathematical and Related Sciences (ICMRS 2020)
Mjesto i datum
Turska, 20.11.2020. - 22.11.2020
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
convex set, convex function of several variables, Jensen's inequality
Sažetak
The aim of this presentation is to show the integral form of Jensen’s inequality for convex functions of several variables as general as possible. In this regard, we have to rely on the decomposition of a nonempty convex set C in the n-dimensional space R^n using concepts of the relative interior of C, and k-faces of C including extreme points as 0-faces. A nonempty convex set C in R^n can be represented as the union of pairwise disjoint relative interiors of its k-faces for those integers k between 0 and n for which k-faces exist. Such a union can be finite (tetrahedron in R^3) or infinite (cone in R^3).
Izvorni jezik
Engleski
Znanstvena područja
Matematika