Pregled bibliografske jedinice broj: 1111323
Approximate explicit feature map for computational augmentation of RGB images of hematoxylin and eosin stained histopathological specimens
Approximate explicit feature map for computational augmentation of RGB images of hematoxylin and eosin stained histopathological specimens // Medical Imaging 2021: Digital Pathology, vol. 11603 / Tomaszevski, John ; Ward, Aaron (ur.).
Belingham: SPIE, 2021. 1160301, 16 doi:10.1117/12.2579408 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1111323 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Approximate explicit feature map for computational augmentation of RGB images of
hematoxylin and eosin stained histopathological specimens
(Approximate explicit feature map for computational augmentation of RGB
images of hematoxylin and eosin stained histopathological specimens)
Autori
Kopriva, Ivica ; Sitnik, Dario ; Aralica, Gorana ; Paćić, Arijana ; Popović Hadžija, Marijana ; Hadžija, Mirko ;
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Medical Imaging 2021: Digital Pathology, vol. 11603
/ Tomaszevski, John ; Ward, Aaron - Belingham : SPIE, 2021
ISBN
978-151-064035-1
Skup
SPIE Medical Imaging 2021
Mjesto i datum
San Diego (CA), Sjedinjene Američke Države, 15.02.2021. - 20.02.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
hyperspectral microscopic image ; RGB microscopic image ; explicit feature map ; computational augmentation ; segmentation ; histopathology
Sažetak
Hyperspectral imaging (HSI) is demonstrating the growing capability for disease diagnosis and surgical cancer resection. That is mainly due to high spectral resolution of HSI when compared with its color (RGB) counterparts. However, increased spectral resolution is often associated with the loss of spatial resolution. That combined with high cost hinders applicability of HSI. Herein, we propose computational approach that attempts to mimic the HSI. It is using an approximate explicit feature map (aEFM) to augment raw and/or stain normalized RGB images of the hematoxylin and eosin stained histopathological specimen. We demonstrate on two public labeled datasets, related to breast cancer and nuclei, the statistically significant improvement of performance of binary (caner vs. non-cancer) segmentation of augmented RGB images in comparison with the results achieved on their RGB counterparts. For the breast cancer, balanced accuracy is increased from 76.56%+/-9.05% to 80.42%+/-9.23% and F1 score from 13.34%+/-6.46% to 17.33%+/-6.36%. For nuclei, balanced accuracy is increased from 68.68%+/-9.25% to 79.99%+/-8.77% and F1 score from 46.92%+/-15.10% to 63.31%+/-14.50%. While constrained nonnegative matrix factorization was used for binary segmentation herein, we conjecture that aEFM based augmentation of RGB images can improve performance of more sophisticated segmentation methods such as deep networks.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Temeljne medicinske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-5235 - Strukturne dekompozicije empirijskih podataka za računalno potpomognutu dijagnostiku bolesti (DEDAD) (Kopriva, Ivica, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb,
Medicinski fakultet, Zagreb,
Klinička bolnica "Dubrava"
Profili:
Mirko Hadžija
(autor)
Marijana Popović-Hadžija
(autor)
Gorana Aralica
(autor)
Dario Sitnik
(autor)
Arijana Pačić
(autor)
Ivica Kopriva
(autor)