Pregled bibliografske jedinice broj: 1111317
Authoritative subspecies diagnosis tool for European honey bees based on ancestry informative SNPs
Authoritative subspecies diagnosis tool for European honey bees based on ancestry informative SNPs // Bmc genomics, 22 (2021), 101, 12 doi:10.1186/s12864-021-07379-7 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1111317 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Authoritative subspecies diagnosis tool for
European honey bees based on ancestry informative
SNPs
Autori
Jamal, Momeni ; Melanie, Parejo ; Rasmus, O. Nielsen ; Jorge, Langa ; Iratxe, Montes ; Laetitia, Papoutsis ; Leila, Farajzadeh ; Christian, Bendixen ; Eliza, Căuia ; Jean-Daniel, Charrière ; Mary F., Coffey ; Cecilia, Costa ; Raffaele, Dall’Olio ; Pilar, De la Rúa ; M. Maja, Drazic ; Janja, Filipi ; Thomas, Galea ; Miroljub, Golubovski ; Ales, Gregorc ; Karina, Grigoryan ; Fani, Hatjina ; Rustem, Ilyasov ; Evgeniya, Ivanova ; Irakli, Janashia ; Irfan, Kandemir ; Aikaterini, Karatasou ; Meral, Kekecoglu ; Nikola, Kezic ; Enikö, Sz. Matray ; David, Mifsud ; Rudolf, Moosbeckhofer ; Alexei G., Nikolenko ; Alexandros, Papachristoforou ; Plamen, Petrov ; M. Alice, Pinto ; Aleksandr V., Poskryakov ; Aglyam Y., Sharipov ; Adrian, Siceanu ; M. Ihsan, Soysal ; Aleksandar, Uzunov ; Marion, Zammit-Mangion ; Rikke, Vingborg ; Maria, Bouga ; Per, Kryger ; Marina D., Meixner ; And one, Estonba
Izvornik
Bmc genomics (1471-2164) 22
(2021);
101, 12
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Apis mellifera, European subspecies, Conservation, Machine learning, Prediction, Biodiversity
Sažetak
Background: With numerous endemic subspecies representing four of its five evolutionary lineages, Europe holds a large fraction of Apis mellifera genetic diversity. This diversity and the natural distribution range have been altered by anthropogenic factors. The conservation of this natural heritage relies on the availability of accurate tools for subspecies diagnosis. Based on pool-sequence data from 2145 worker bees representing 22 populations sampled across Europe, we employed two highly discriminative approaches (PCA and FST) to select the most informative SNPs for ancestry inference. Results: Using a supervised machine learning (ML) approach and a set of 3896 genotyped individuals, we could show that the 4094 selected single nucleotide polymorphisms (SNPs) provide an accurate prediction of ancestry inference in European honey bees. The best ML model was Linear Support Vector Classifier (Linear SVC) which correctly assigned most individuals to one of the 14 subspecies or different genetic origins with a mean accuracy of 96.2% ± 0.8 SD. A total of 3.8% of test individuals were misclassified, most probably due to limited differentiation between the subspecies caused by close geographical proximity, or human interference of genetic integrity of reference subspecies, or a combination thereof. Conclusions: The diagnostic tool presented here will contribute to a sustainable conservation and support breeding activities in order to preserve the genetic heritage of European honey bees.
Izvorni jezik
Engleski
Znanstvena područja
Biologija, Interdisciplinarne prirodne znanosti, Interdisciplinarne biotehničke znanosti
POVEZANOST RADA
Ustanove:
Sveučilište u Zadru,
Sveučilište u Zagrebu
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE