Pregled bibliografske jedinice broj: 1110602
Multi-parameter Mathieu, and alternating Mathieu series
Multi-parameter Mathieu, and alternating Mathieu series // Applied mathematics and computation, 400 (2021), 1-27 doi:10.1016/j.amc.2021.126099 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1110602 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multi-parameter Mathieu, and alternating Mathieu
series
Autori
Parmar, Rakesh K. ; Milovanović, Gradimir V. ; Poganj, Tibor
Izvornik
Applied mathematics and computation (0096-3003) 400
(2021);
1-27
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Mathieu and alternating Mathieu series ; Lauricella’s hypergeometric functions ; Generalized Weber-Schafheitlin integral ; Riemann Zeta function ; Dirichlet Eta function ; Laplace transform ; Mellin transform ; Functional bounding inequalities ; log-convexity ; Turán inequality
Sažetak
The main purpose of this paper is to present a multi-parameter study of the familiar Mathieu series and the alternating Mathieu series S(r) and S^tilde(r). The computable series expansions of the their related integral representations are obtained in terms of higher transcendental hypergeometric functions like Lauricella's hypergeometric function F_C^(m)[x], Fox-Wright Psi function, Srivastava- Daoust generalized Lauricella function, Riemann Zeta and Dirichlet Eta functions, while the extensions concern products of Bessel and modified Bessel functions of the first kind, hyper-Bessel and Bessel- Clifford functions. Auxiliary Laplace-Mellin transforms, bounding inequalities for the hyper- Bessel and Bessel- Clifford functions are established - which are also of independent but considerable interest. A set of bounding inequalities are presented either for the hyper- Bessel and Bessel-Clifford functions which are to our best knowledge new, or also for all considered extended Mathieu-type series. Next, functional bounding inequalities, log-convexity properties and Turán inequality results are presented for the investigated extensions of multi-parameter Mathieu-type series. We end the exposition by a thorough discussion closes the exposition including important details, bridges to occurring new questions like the similar kind multi- parameter treatment of the complete Butzer-Flocke- Hauss Omega function which is intimately connected with the Mathieu series family.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Tehnologija prometa i transport
POVEZANOST RADA
Projekti:
NadSve-Sveučilište u Rijeci-uniri-pr-prirod-19-16 - Stohastičke metode u matematičkoj analizi (Krizmanić, Danijel, NadSve - UNIRI-plus projekti 2018) ( CroRIS)
--uniri-technic - Istraživanje okolišnih utjecaja na rad satelitskih navigacijskih sustava u pomorskoj navigaciji (Brčić, David) ( CroRIS)
Ustanove:
Pomorski fakultet, Rijeka
Profili:
Tibor Poganj
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Referativnij Zhurnal Matematika