Pregled bibliografske jedinice broj: 1110489
Deriving CME Density From Remote Sensing Data and Comparison to In‐Situ Measurements
Deriving CME Density From Remote Sensing Data and Comparison to In‐Situ Measurements // Journal of geophysical research. Space physics, 126 (2021), 1; e2020JA028380, 17 doi:10.1029/2020JA028380 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1110489 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Deriving CME Density From Remote Sensing Data and Comparison to
In‐Situ Measurements
Autori
Temmer, M. ; Holzknecht, L. ; Dumbovic, M. ; Vrsnak, B. ; Sachdeva, N. ; Heinemann, S. G. ; Dissauer, K. ; Scolini, C. ; Asvestari, E. ; Veronig, A. M. ; Hofmeister, S. J.
Izvornik
Journal of geophysical research. Space physics (2169-9380) 126
(2021), 1;
E2020JA028380, 17
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Astrophysics - Solar and Stellar Astrophysics ; coronal mass ejections
Sažetak
We determine the three‐dimensional geometry and deprojected mass of 29 well‐observed coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) using combined Solar Terrestrial Relations Observatory ‐ Solar and Heliospheric Observatory white‐ light data. From the geometry parameters, we calculate the volume of the CME for the magnetic ejecta (flux‐rope type geometry) and sheath structure (shell‐like geometry resembling the (I)CME frontal rim). Working under the assumption that the CME mass is roughly equally distributed within a specific volume, we expand the CME self‐ similarly and calculate the CME density for distances close to the Sun (15–30 Rs) and at 1 AU. Specific trends are derived comparing calculated and in‐situ measured proton densities at 1 AU, though large uncertainties are revealed due to the unknown mass and geometry evolution: (1) a moderate correlation for the magnetic structure having a mass that stays rather constant (cc ≈ 0.56 − 0.59), and (2) a weak correlation for the sheath density (cc ≈ 0.26) by assuming the sheath region is an extra mass—as expected for a mass pile‐up process—that is in its amount comparable to the initial CME deprojected mass. High correlations are derived between in‐situ measured sheath density and the solar wind density (cc ≈ −0.73) and solar wind speed (cc ≈ 0.56) as measured 24 h ahead of the arrival of the disturbance. This gives additional confirmation that the sheath‐ plasma indeed stems from piled‐up solar wind material. While the CME interplanetary propagation speed is not related to the sheath density, the size of the CME may play some role in how much material could be piled up.
Izvorni jezik
Engleski
Znanstvena područja
Fizika
POVEZANOST RADA
Projekti:
IP-2018-01-7549 - Milimetarska i submilimetarska opažanja Sunčeve kromosfere pomoću ALMA-e (MSOC) (Brajša, Roman, HRZZ - 2018-01) ( CroRIS)
Ustanove:
Geodetski fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI