Pregled bibliografske jedinice broj: 1110421
Benchmarking attention-based interpretability of deep learning in multivariate time series predictions
Benchmarking attention-based interpretability of deep learning in multivariate time series predictions // Entropy (Basel. Online), 23 (2021), 2; 143, 23 doi:10.3390/e23020143 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1110421 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Benchmarking attention-based interpretability of
deep learning in multivariate time series
predictions
Autori
Barić, Domjan ; Fumić, Petar ; Horvatić, Davor ; Lipić, Tomislav
Izvornik
Entropy (Basel. Online) (1099-4300) 23
(2021), 2;
143, 23
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
multivariate time series ; attention mechanism ; interpretability ; synthetically designed datasets
Sažetak
The adaptation of deep learning models within safety-critical systems cannot rely only on good prediction performance but needs to provide interpretable and robust explanations for their decisions. When modeling complex sequences, attention mechanisms are regarded as the established approach to support deep neural networks with intrinsic interpretability. This paper focuses on the emerging trend of specifically designing diagnostic datasets for understanding the inner workings of attention mechanism based deep learning models for multivariate forecasting tasks. We design a novel benchmark of synthetically designed datasets with the transparent underlying generating process of multiple time series interactions with increasing complexity. The benchmark enables empirical evaluation of the performance of attention based deep neural networks in three different aspects: (i) prediction performance score, (ii) interpretability correctness, (iii) sensitivity analysis. Our analysis shows that although most models have satisfying and stable prediction performance results, they often fail to give correct interpretability. The only model with both a satisfying performance score and correct interpretability is IMV-LSTM, capturing both autocorrelations and crosscorrelations between multiple time series. Interestingly, while evaluating IMV-LSTM on simulated data from statistical and mechanistic models, the correctness of interpretability increases with more complex datasets.
Izvorni jezik
Engleski
Znanstvena područja
Fizika, Računarstvo, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
--KK.01.1.1.01.0004 - Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri (QuantiXLie) (Buljan, Hrvoje; Pandžić, Pavle) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus