Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1110421

Benchmarking attention-based interpretability of deep learning in multivariate time series predictions


Barić, Domjan; Fumić, Petar; Horvatić, Davor; Lipić, Tomislav
Benchmarking attention-based interpretability of deep learning in multivariate time series predictions // Entropy (Basel. Online), 23 (2021), 2; 143, 23 doi:10.3390/e23020143 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1110421 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Benchmarking attention-based interpretability of deep learning in multivariate time series predictions

Autori
Barić, Domjan ; Fumić, Petar ; Horvatić, Davor ; Lipić, Tomislav

Izvornik
Entropy (Basel. Online) (1099-4300) 23 (2021), 2; 143, 23

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
multivariate time series ; attention mechanism ; interpretability ; synthetically designed datasets

Sažetak
The adaptation of deep learning models within safety-critical systems cannot rely only on good prediction performance but needs to provide interpretable and robust explanations for their decisions. When modeling complex sequences, attention mechanisms are regarded as the established approach to support deep neural networks with intrinsic interpretability. This paper focuses on the emerging trend of specifically designing diagnostic datasets for understanding the inner workings of attention mechanism based deep learning models for multivariate forecasting tasks. We design a novel benchmark of synthetically designed datasets with the transparent underlying generating process of multiple time series interactions with increasing complexity. The benchmark enables empirical evaluation of the performance of attention based deep neural networks in three different aspects: (i) prediction performance score, (ii) interpretability correctness, (iii) sensitivity analysis. Our analysis shows that although most models have satisfying and stable prediction performance results, they often fail to give correct interpretability. The only model with both a satisfying performance score and correct interpretability is IMV-LSTM, capturing both autocorrelations and crosscorrelations between multiple time series. Interestingly, while evaluating IMV-LSTM on simulated data from statistical and mechanistic models, the correctness of interpretability increases with more complex datasets.

Izvorni jezik
Engleski

Znanstvena područja
Fizika, Računarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
--KK.01.1.1.01.0004 - Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri (QuantiXLie) (Buljan, Hrvoje; Pandžić, Pavle) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Davor Horvatić (autor)

Avatar Url Petar Fumić (autor)

Avatar Url Tomislav Lipić (autor)

Avatar Url Domjan Barić (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com fulir.irb.hr

Citiraj ovu publikaciju:

Barić, Domjan; Fumić, Petar; Horvatić, Davor; Lipić, Tomislav
Benchmarking attention-based interpretability of deep learning in multivariate time series predictions // Entropy (Basel. Online), 23 (2021), 2; 143, 23 doi:10.3390/e23020143 (međunarodna recenzija, članak, znanstveni)
Barić, D., Fumić, P., Horvatić, D. & Lipić, T. (2021) Benchmarking attention-based interpretability of deep learning in multivariate time series predictions. Entropy (Basel. Online), 23 (2), 143, 23 doi:10.3390/e23020143.
@article{article, author = {Bari\'{c}, Domjan and Fumi\'{c}, Petar and Horvati\'{c}, Davor and Lipi\'{c}, Tomislav}, year = {2021}, pages = {23}, DOI = {10.3390/e23020143}, chapter = {143}, keywords = {multivariate time series, attention mechanism, interpretability, synthetically designed datasets}, journal = {Entropy (Basel. Online)}, doi = {10.3390/e23020143}, volume = {23}, number = {2}, issn = {1099-4300}, title = {Benchmarking attention-based interpretability of deep learning in multivariate time series predictions}, keyword = {multivariate time series, attention mechanism, interpretability, synthetically designed datasets}, chapternumber = {143} }
@article{article, author = {Bari\'{c}, Domjan and Fumi\'{c}, Petar and Horvati\'{c}, Davor and Lipi\'{c}, Tomislav}, year = {2021}, pages = {23}, DOI = {10.3390/e23020143}, chapter = {143}, keywords = {multivariate time series, attention mechanism, interpretability, synthetically designed datasets}, journal = {Entropy (Basel. Online)}, doi = {10.3390/e23020143}, volume = {23}, number = {2}, issn = {1099-4300}, title = {Benchmarking attention-based interpretability of deep learning in multivariate time series predictions}, keyword = {multivariate time series, attention mechanism, interpretability, synthetically designed datasets}, chapternumber = {143} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font