Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1108747

A deep neural network for simultaneous estimation of b jet energy and resolution


(CMS Collaboration) Sirunyan, Albert M; ...; Antunović, Željko; Brigljević, Vuko; Ferenček, Dinko; Giljanović, Duje; Godinović, Nikola; Kadija, Krešo; Kovač, Marko; Lelas, Damir et al.
A deep neural network for simultaneous estimation of b jet energy and resolution // Computing and software for big science, 4 (2020), 1; 10, 20 doi:10.1007/s41781-020-00041-z (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1108747 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A deep neural network for simultaneous estimation of b jet energy and resolution

Autori
Sirunyan, Albert M ; ... ; Antunović, Željko ; Brigljević, Vuko ; Ferenček, Dinko ; Giljanović, Duje ; Godinović, Nikola ; Kadija, Krešo ; Kovač, Marko ; Lelas, Damir ; Majumder, Devdatta ; Mesić, Benjamin ; Puljak, Ivica ; Roguljić, Matej ; Starodumov, Andrey ; Đurić, Senka ; Šuša, Tatjana ; Šćulac, Toni ; ... ; Trembath-reichert, Stephen

Kolaboracija
CMS Collaboration

Izvornik
Computing and software for big science (2510-2036) 4 (2020), 1; 10, 20

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
High energy physics ; Experimental particle physics ; LHC ; CMS ; b jets ; Higgs boson ; Jet energy ; Jet resolution ; Deep learning

Sažetak
We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of $\sqrt{; ; ; s}; ; ; =$ 13 TeV at the CERN LHC. The algorithm is trained on a large simulated sample of b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb$^{; ; ; -1}; ; ; $. A multivariate regression algorithm based on a deep feed- forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to $\mathrm{; ; ; b\bar{; ; ; b}; ; ; }; ; ; $.

Izvorni jezik
Engleski

Znanstvena područja
Fizika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Institut "Ruđer Bošković", Zagreb,
Prirodoslovno-matematički fakultet, Split

Citiraj ovu publikaciju:

(CMS Collaboration) Sirunyan, Albert M; ...; Antunović, Željko; Brigljević, Vuko; Ferenček, Dinko; Giljanović, Duje; Godinović, Nikola; Kadija, Krešo; Kovač, Marko; Lelas, Damir et al.
A deep neural network for simultaneous estimation of b jet energy and resolution // Computing and software for big science, 4 (2020), 1; 10, 20 doi:10.1007/s41781-020-00041-z (međunarodna recenzija, članak, znanstveni)
(CMS Collaboration) (CMS Collaboration) Sirunyan, A., ..., Antunović, Ž., Brigljević, V., Ferenček, D., Giljanović, D., Godinović, N., Kadija, K., Kovač, M. & Lelas, D. (2020) A deep neural network for simultaneous estimation of b jet energy and resolution. Computing and software for big science, 4 (1), 10, 20 doi:10.1007/s41781-020-00041-z.
@article{article, author = {Sirunyan, Albert M and Antunovi\'{c}, \v{Z}eljko and Brigljevi\'{c}, Vuko and Feren\v{c}ek, Dinko and Giljanovi\'{c}, Duje and Godinovi\'{c}, Nikola and Kadija, Kre\v{s}o and Kova\v{c}, Marko and Lelas, Damir and Majumder, Devdatta and Mesi\'{c}, Benjamin and Puljak, Ivica and Rogulji\'{c}, Matej and Starodumov, Andrey and \DJuri\'{c}, Senka and \v{S}u\v{s}a, Tatjana and \v{S}\'{c}ulac, Toni and Trembath-reichert, Stephen}, year = {2020}, pages = {20}, DOI = {10.1007/s41781-020-00041-z}, chapter = {10}, keywords = {High energy physics, Experimental particle physics, LHC, CMS, b jets, Higgs boson, Jet energy, Jet resolution, Deep learning}, journal = {Computing and software for big science}, doi = {10.1007/s41781-020-00041-z}, volume = {4}, number = {1}, issn = {2510-2036}, title = {A deep neural network for simultaneous estimation of b jet energy and resolution}, keyword = {High energy physics, Experimental particle physics, LHC, CMS, b jets, Higgs boson, Jet energy, Jet resolution, Deep learning}, chapternumber = {10} }
@article{article, author = {Sirunyan, Albert M and Antunovi\'{c}, \v{Z}eljko and Brigljevi\'{c}, Vuko and Feren\v{c}ek, Dinko and Giljanovi\'{c}, Duje and Godinovi\'{c}, Nikola and Kadija, Kre\v{s}o and Kova\v{c}, Marko and Lelas, Damir and Majumder, Devdatta and Mesi\'{c}, Benjamin and Puljak, Ivica and Rogulji\'{c}, Matej and Starodumov, Andrey and \DJuri\'{c}, Senka and \v{S}u\v{s}a, Tatjana and \v{S}\'{c}ulac, Toni and Trembath-reichert, Stephen}, year = {2020}, pages = {20}, DOI = {10.1007/s41781-020-00041-z}, chapter = {10}, keywords = {High energy physics, Experimental particle physics, LHC, CMS, b jets, Higgs boson, Jet energy, Jet resolution, Deep learning}, journal = {Computing and software for big science}, doi = {10.1007/s41781-020-00041-z}, volume = {4}, number = {1}, issn = {2510-2036}, title = {A deep neural network for simultaneous estimation of b jet energy and resolution}, keyword = {High energy physics, Experimental particle physics, LHC, CMS, b jets, Higgs boson, Jet energy, Jet resolution, Deep learning}, chapternumber = {10} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font