Pregled bibliografske jedinice broj: 1108747
A deep neural network for simultaneous estimation of b jet energy and resolution
A deep neural network for simultaneous estimation of b jet energy and resolution // Computing and software for big science, 4 (2020), 1; 10, 20 doi:10.1007/s41781-020-00041-z (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1108747 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A deep neural network for simultaneous estimation
of b jet energy and resolution
Autori
Sirunyan, Albert M ; ... ; Antunović, Željko ; Brigljević, Vuko ; Ferenček, Dinko ; Giljanović, Duje ; Godinović, Nikola ; Kadija, Krešo ; Kovač, Marko ; Lelas, Damir ; Majumder, Devdatta ; Mesić, Benjamin ; Puljak, Ivica ; Roguljić, Matej ; Starodumov, Andrey ; Đurić, Senka ; Šuša, Tatjana ; Šćulac, Toni ; ... ; Trembath-reichert, Stephen
Kolaboracija
CMS Collaboration
Izvornik
Computing and software for big science (2510-2036) 4
(2020), 1;
10, 20
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
High energy physics ; Experimental particle physics ; LHC ; CMS ; b jets ; Higgs boson ; Jet energy ; Jet resolution ; Deep learning
Sažetak
We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of $\sqrt{; ; ; s}; ; ; =$ 13 TeV at the CERN LHC. The algorithm is trained on a large simulated sample of b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb$^{; ; ; -1}; ; ; $. A multivariate regression algorithm based on a deep feed- forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to $\mathrm{; ; ; b\bar{; ; ; b}; ; ; }; ; ; $.
Izvorni jezik
Engleski
Znanstvena područja
Fizika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Institut "Ruđer Bošković", Zagreb,
Prirodoslovno-matematički fakultet, Split
Profili:
Matej Roguljić
(autor)
Damir Lelas
(autor)
Krešo Kadija
(autor)
Toni Šćulac
(autor)
Vuko Brigljević
(autor)
Željko Antunović
(autor)
Marko Kovač
(autor)
Duje Giljanović
(autor)
Ivica Puljak
(autor)
Tatjana Šuša
(autor)
Nikola Godinović
(autor)
Benjamin Mesić
(autor)
Dinko Ferenček
(autor)
Devdatta Majumder
(autor)
Senka Đurić
(autor)