Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1108537

Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques


(CMS Collaboration) Sirunyan, Albert M; ...; Antunović, Željko; Brigljević, Vuko; Ferenček, Dinko; Giljanović, Duje; Godinović, Nikola; Kadija, Krešo; Kovač, Marko; Lelas, Damir et al.
Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques // Journal of Instrumentation, 15 (2020), 6; P06005, 87 doi:10.1088/1748-0221/15/06/P06005 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1108537 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques

Autori
Sirunyan, Albert M ; ... ; Antunović, Željko ; Brigljević, Vuko ; Ferenček, Dinko ; Giljanović, Duje ; Godinović, Nikola ; Kadija, Krešo ; Kovač, Marko ; Lelas, Damir ; Majumder, Devdatta ; Mesić, Benjamin ; Puljak, Ivica ; Roguljić, Matej ; Starodumov, Andrey ; Đurić, Senka ; Šuša, Tatjana ; Šćulac, Toni ; ... ; Trembath-reichert, Stephen

Kolaboracija
CMS Collaboration

Izvornik
Journal of Instrumentation (1748-0221) 15 (2020), 6; P06005, 87

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
High energy physics ; Experimental particle physics ; LHC ; CMS ; Particle Physics Experiments ; Physics ; Vector boson scattering ; Hadron-Hadron scattering (experiments) ; Supersymmetry ; Higgs physics ; Particle and resonance production ; B physics ; Particle correlations and fluctuations ; Quarkonium ; Elementary Particles and Fields ; Beyond Standard Model ; Jets ; QCD ; Top physics ; Diboson ; Electroweak ; CKM matrix ; Top quark ; Large detector-systems performance ; Pattern recognition

Sažetak
Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at $\sqrt{; ; ; s}; ; ; =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{; ; ; -1}; ; ; $. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.

Izvorni jezik
Engleski

Znanstvena područja
Fizika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Institut "Ruđer Bošković", Zagreb,
Prirodoslovno-matematički fakultet, Split

Citiraj ovu publikaciju:

(CMS Collaboration) Sirunyan, Albert M; ...; Antunović, Željko; Brigljević, Vuko; Ferenček, Dinko; Giljanović, Duje; Godinović, Nikola; Kadija, Krešo; Kovač, Marko; Lelas, Damir et al.
Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques // Journal of Instrumentation, 15 (2020), 6; P06005, 87 doi:10.1088/1748-0221/15/06/P06005 (međunarodna recenzija, članak, znanstveni)
(CMS Collaboration) (CMS Collaboration) Sirunyan, A., ..., Antunović, Ž., Brigljević, V., Ferenček, D., Giljanović, D., Godinović, N., Kadija, K., Kovač, M. & Lelas, D. (2020) Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques. Journal of Instrumentation, 15 (6), P06005, 87 doi:10.1088/1748-0221/15/06/P06005.
@article{article, author = {Sirunyan, Albert M and Antunovi\'{c}, \v{Z}eljko and Brigljevi\'{c}, Vuko and Feren\v{c}ek, Dinko and Giljanovi\'{c}, Duje and Godinovi\'{c}, Nikola and Kadija, Kre\v{s}o and Kova\v{c}, Marko and Lelas, Damir and Majumder, Devdatta and Mesi\'{c}, Benjamin and Puljak, Ivica and Rogulji\'{c}, Matej and Starodumov, Andrey and \DJuri\'{c}, Senka and \v{S}u\v{s}a, Tatjana and \v{S}\'{c}ulac, Toni and Trembath-reichert, Stephen}, year = {2020}, pages = {87}, DOI = {10.1088/1748-0221/15/06/P06005}, chapter = {P06005}, keywords = {High energy physics, Experimental particle physics, LHC, CMS, Particle Physics Experiments, Physics, Vector boson scattering, Hadron-Hadron scattering (experiments), Supersymmetry, Higgs physics, Particle and resonance production, B physics, Particle correlations and fluctuations, Quarkonium, Elementary Particles and Fields, Beyond Standard Model, Jets, QCD, Top physics, Diboson, Electroweak, CKM matrix, Top quark, Large detector-systems performance, Pattern recognition}, journal = {Journal of Instrumentation}, doi = {10.1088/1748-0221/15/06/P06005}, volume = {15}, number = {6}, issn = {1748-0221}, title = {Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques}, keyword = {High energy physics, Experimental particle physics, LHC, CMS, Particle Physics Experiments, Physics, Vector boson scattering, Hadron-Hadron scattering (experiments), Supersymmetry, Higgs physics, Particle and resonance production, B physics, Particle correlations and fluctuations, Quarkonium, Elementary Particles and Fields, Beyond Standard Model, Jets, QCD, Top physics, Diboson, Electroweak, CKM matrix, Top quark, Large detector-systems performance, Pattern recognition}, chapternumber = {P06005} }
@article{article, author = {Sirunyan, Albert M and Antunovi\'{c}, \v{Z}eljko and Brigljevi\'{c}, Vuko and Feren\v{c}ek, Dinko and Giljanovi\'{c}, Duje and Godinovi\'{c}, Nikola and Kadija, Kre\v{s}o and Kova\v{c}, Marko and Lelas, Damir and Majumder, Devdatta and Mesi\'{c}, Benjamin and Puljak, Ivica and Rogulji\'{c}, Matej and Starodumov, Andrey and \DJuri\'{c}, Senka and \v{S}u\v{s}a, Tatjana and \v{S}\'{c}ulac, Toni and Trembath-reichert, Stephen}, year = {2020}, pages = {87}, DOI = {10.1088/1748-0221/15/06/P06005}, chapter = {P06005}, keywords = {High energy physics, Experimental particle physics, LHC, CMS, Particle Physics Experiments, Physics, Vector boson scattering, Hadron-Hadron scattering (experiments), Supersymmetry, Higgs physics, Particle and resonance production, B physics, Particle correlations and fluctuations, Quarkonium, Elementary Particles and Fields, Beyond Standard Model, Jets, QCD, Top physics, Diboson, Electroweak, CKM matrix, Top quark, Large detector-systems performance, Pattern recognition}, journal = {Journal of Instrumentation}, doi = {10.1088/1748-0221/15/06/P06005}, volume = {15}, number = {6}, issn = {1748-0221}, title = {Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques}, keyword = {High energy physics, Experimental particle physics, LHC, CMS, Particle Physics Experiments, Physics, Vector boson scattering, Hadron-Hadron scattering (experiments), Supersymmetry, Higgs physics, Particle and resonance production, B physics, Particle correlations and fluctuations, Quarkonium, Elementary Particles and Fields, Beyond Standard Model, Jets, QCD, Top physics, Diboson, Electroweak, CKM matrix, Top quark, Large detector-systems performance, Pattern recognition}, chapternumber = {P06005} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font