Pregled bibliografske jedinice broj: 1108537
Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques // Journal of Instrumentation, 15 (2020), 6; P06005, 87 doi:10.1088/1748-0221/15/06/P06005 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1108537 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
Autori
Sirunyan, Albert M ; ... ; Antunović, Željko ; Brigljević, Vuko ; Ferenček, Dinko ; Giljanović, Duje ; Godinović, Nikola ; Kadija, Krešo ; Kovač, Marko ; Lelas, Damir ; Majumder, Devdatta ; Mesić, Benjamin ; Puljak, Ivica ; Roguljić, Matej ; Starodumov, Andrey ; Đurić, Senka ; Šuša, Tatjana ; Šćulac, Toni ; ... ; Trembath-reichert, Stephen
Kolaboracija
CMS Collaboration
Izvornik
Journal of Instrumentation (1748-0221) 15
(2020), 6;
P06005, 87
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
High energy physics ; Experimental particle physics ; LHC ; CMS ; Particle Physics Experiments ; Physics ; Vector boson scattering ; Hadron-Hadron scattering (experiments) ; Supersymmetry ; Higgs physics ; Particle and resonance production ; B physics ; Particle correlations and fluctuations ; Quarkonium ; Elementary Particles and Fields ; Beyond Standard Model ; Jets ; QCD ; Top physics ; Diboson ; Electroweak ; CKM matrix ; Top quark ; Large detector-systems performance ; Pattern recognition
Sažetak
Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at $\sqrt{; ; ; s}; ; ; =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{; ; ; -1}; ; ; $. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.
Izvorni jezik
Engleski
Znanstvena područja
Fizika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Institut "Ruđer Bošković", Zagreb,
Prirodoslovno-matematički fakultet, Split
Profili:
Matej Roguljić
(autor)
Damir Lelas
(autor)
Krešo Kadija
(autor)
Toni Šćulac
(autor)
Vuko Brigljević
(autor)
Željko Antunović
(autor)
Marko Kovač
(autor)
Duje Giljanović
(autor)
Ivica Puljak
(autor)
Tatjana Šuša
(autor)
Nikola Godinović
(autor)
Benjamin Mesić
(autor)
Dinko Ferenček
(autor)
Devdatta Majumder
(autor)
Senka Đurić
(autor)
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi iopscience.iop.org fulir.irb.hrCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus