Pregled bibliografske jedinice broj: 1106403
Self-orthogonal codes constructed from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs
Self-orthogonal codes constructed from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs // Abstracts of the 9th Slovenian International Conference on Graph Theory / Sergio Cabello, Bojan Mohar (ur.).
Ljubljana: Institute of Mathematics, Physics and Mechanics, 2019. str. 58-58 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1106403 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Self-orthogonal codes constructed from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs
Autori
Švob, Andrea ; Crnković, Dean ; Egan, Ronan ;
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Abstracts of the 9th Slovenian International Conference on Graph Theory
/ Sergio Cabello, Bojan Mohar - Ljubljana : Institute of Mathematics, Physics and Mechanics, 2019, 58-58
ISBN
978-961-92681-1-7
Skup
9th Slovenian International Conference on Graph Theory
Mjesto i datum
Bled, Slovenija, 23.06.2019. - 29.06.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Strongly regular graph, Seidel matrix, Laplacian matrix, orbit matrix, self-orthogonal code
Sažetak
In this talk we introduce the notion of orbit matrices of integer matrices such as Hadamard matrices, Seidel and Laplacian matrices of some strongly regular graphs with respect to their permutation automorphism groups. We further show that under certain conditions these orbit matrices yield self-orthogonal codes over finite fields Fq, where q is a prime power and over finite rings Zm. As a case study, we construct codes from orbit matrices of Seidel, Laplacian and signless Laplacian matrices of strongly regular graphs. In particular, we construct self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of the Higman-Sims and McLaughlin graphs.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-6732 - Kombinatorički objekti i kodovi (COCo) (Crnković, Dean, HRZZ ) ( CroRIS)
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku