Pregled bibliografske jedinice broj: 1106374
Graph decompositions in projective geometries
Graph decompositions in projective geometries // Journal of combinatorial designs, 29 (2021), 3; 141-174 doi:10.1002/jcd.21761 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1106374 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Graph decompositions in projective geometries
Autori
Buratti, Marco ; Nakić, Anamari ; Wassermann, Alfred
Izvornik
Journal of combinatorial designs (1063-8539) 29
(2021), 3;
141-174
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
design over a finite field ; difference family ; difference set ; graph decomposition ; group divisible design over a finite field ; projective space ; spread
Sažetak
In this study of a foundational nature we illustrate how difference methods allow us to get concrete nontrivial examples of ‐ decompositions over GF(2) or GF(3) for which is a cycle, a path, a prism, a generalized Petersen graph, or a Moebius ladder. In particular, we will discuss in detail the special and very hard case that is complete and lambda = 1, that is, the Steiner 2‐ designs over a finite field. Also, we briefly touch the new topic of near resolvable 2- (v, 2, 1) designs over GF(q). This study has led us to some (probably new) collateral problems concerning difference sets. Supported by multiple examples, we conjecture the existence of infinite families of Γ‐decompositions over a finite field that can be obtained by suitably labeling the vertices of Γ with the elements of a Singer difference set.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-6732 - Kombinatorički objekti i kodovi (COCo) (Crnković, Dean, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Anamari Nakić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus