Pregled bibliografske jedinice broj: 1105397
Multi-domain semantic segmentation with pyramidal fusion
Multi-domain semantic segmentation with pyramidal fusion, 2020. (rukopis).
CROSBI ID: 1105397 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multi-domain semantic segmentation with pyramidal fusion
Autori
Oršić, Marin ; Bevandić, Petra ; Grubišić, Ivan ; Šarić, Josip ; Šegvić , Siniša
Izvornik
ArXiv:2009.01636
Vrsta, podvrsta
Ostale vrste radova, rukopis
Godina
2020
Ključne riječi
semantic segmentation ; multi-domain recognition
(arXiv:2009.01636)
Sažetak
We present our submission to the semantic segmentation contest of the Robust Vision Challenge held at ECCV 2020. The contest requires submitting the same model to seven benchmarks from three different domains. Our approach is based on the SwiftNet architecture with pyramidal fusion. We address inconsistent taxonomies with a single-level 193-dimensional softmax output. We strive to train with large batches in order to stabilize optimization of a hard recognition problem, and to favour smooth evolution of batchnorm statistics. We achieve this by implementing a custom backward step through log-sum-prob loss, and by using small crops before freezing the population statistics. Our model ranks first on the RVC semantic segmentation challenge as well as on the WildDash 2 leaderboard. This suggests that pyramidal fusion is competitive not only for efficient inference with lightweight backbones, but also in large-scale setups for multi-domain application.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Ivan Grubišić
(autor)
Josip Šarić
(autor)
Marin Oršić
(autor)
Petra Bevandić
(autor)
Siniša Šegvić
(autor)