Pregled bibliografske jedinice broj: 1104501
Existence of strong traces for entropy solutions of degenerate parabolic equations
Existence of strong traces for entropy solutions of degenerate parabolic equations // Seminar "Bogoljub Stanković"
Novi Sad, Srbija, 2020. (predavanje, nije recenziran, neobjavljeni rad, znanstveni)
CROSBI ID: 1104501 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Existence of strong traces for entropy solutions
of degenerate parabolic equations
Autori
Erceg, Marko ; Mitrović, Darko
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
Seminar "Bogoljub Stanković"
Mjesto i datum
Novi Sad, Srbija, 09.03.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
degenerate parabolic equations ; strong traces ; defect measures
Sažetak
In this talk we study solutions to the degenerate parabolic equation $$ \partial_t u + \operatorname{; ; ; div}; ; ; _x f(u) = \operatorname{; ; ; div}; ; ; _x(a(u)\nabla u) \, , $$ subject to the initial condition $u(0, \cdot)=u_0$. Here the degeneracy appears as the matrix $a(\lambda)$ is only positive semi- definite, i.e.~it can be equal to zero in some directions. Moreover, the degeneracy can occur in any direction, which is the main novelty. Equations of this form often occure in modelling flows in porous media and sedimentation- consolidation processes. As a consequence of the degeneracy, solutions could be singular, so one needs to justify the meaning of the initial condition. A standard way is to show that $u_0$ is the strong trace of a solution $u$ at $t=0$. The notion of strong traces proved to be very useful in showing the uniqueness of the solution to scalar conservation laws with discontinuous flux. We prove existence of strong traces for entropy solutions to the equation above under the non- degeneracy conditions. The proof is based on the blow-up techniques, where a variant of microlocal defect functional is used and applied to the kinetic formulation of the equation above. This is joint work with Darko Mitrovi\'c.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-2449 - Mikrolokalni defektni alati u parcijalnim diferencijalnim jednadžbama (MiTPDE) (Antonić, Nenad, HRZZ - 2018-01) ( CroRIS)
HRZZ-UIP-2017-05-7249 - Matematička analiza i numeričke metode za višefazne sustave vođene difuzijom (MANDphy) (Bukal, Mario, HRZZ ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb