Pregled bibliografske jedinice broj: 1104467
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurations // LMS Harmonic Analysis and PDEs Meeting
London, Ujedinjeno Kraljevstvo, 2020. (pozvano predavanje, nije recenziran, neobjavljeni rad, znanstveni)
CROSBI ID: 1104467 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Density theorems for Euclidean point configurations
Autori
Kovač, Vjekoslav
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
LMS Harmonic Analysis and PDEs Meeting
Mjesto i datum
London, Ujedinjeno Kraljevstvo, 11.12.2020
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
configuration ; density theorem
Sažetak
Euclidean density theorems seek for dilated, rotated, and translated copies of a fixed finite point configuration within a "large" measurable subset of the Euclidean space of appropriate dimension. Of particular interest are results that identify the configuration dilated by all sufficiently large scales. Since the seminal paper by Bourgain, which handled configurations forming vertices of a non-degenerate simplex, the proof strategy has always been a certain (explicit or implicit) decomposition of the counting form into structured, error, and uniform pieces, much in the spirit of regularity lemmas from arithmetic combinatorics and graph theory. However, a significant extra input from harmonic analysis is also needed in the proofs, often from the subfields of multilinear singular and oscillatory integrals. We will present several recent results on this topic, discussing: configurations standing in an arithmetic progression, three point corners, vertices of boxes with three-term progressions "attached, " configurations coming from anisotropic dilations, and configurations in sets of density close to 1, and leaving a few open problems. We will also always try to emphasize singular integral operators relevant to the discussed proof. The talk will be based on several papers coauthored with P. Durcik, K. Falconer, L. Rimanic, and A. Yavicoli.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-UIP-2017-05-4129 - Multilinearna i nelinearna harmonijska analiza i primjene (MUNHANAP) (Kovač, Vjekoslav, HRZZ ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Vjekoslav Kovač
(autor)