Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1104362

Determining elements of minimal index in some parametric families of bicyclic biquadratic fields


Borka Jadrijević
Determining elements of minimal index in some parametric families of bicyclic biquadratic fields // Monogenity and power integral bases
Debrecen, Mađarska, 2021. (pozvano predavanje, podatak o recenziji nije dostupan, neobjavljeni rad, znanstveni)


CROSBI ID: 1104362 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Determining elements of minimal index in some parametric families of bicyclic biquadratic fields

Autori
Borka Jadrijević

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni

Skup
Monogenity and power integral bases

Mjesto i datum
Debrecen, Mađarska, 14.01.2021

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Podatak o recenziji nije dostupan

Ključne riječi
minimal index, index form equation, bicyclic biquadratic fields, p-adic version of the index form equations, relative power integral bases, system of relative Pellian equations

Sažetak
In this talk, we will first present two different methods for determining monogenity and all elements of the minimal index in some infinite parametric families of totally real bicyclic biquadratic number fields. In certain parametric families, the problem is reduced the problem to the resolution of a system of Pellian equations. We will show how the theory of continued fractions can be used to determine the minimal index. In a joint work with István Gaál, we considered a similar type of family of number fields, but we applied a quite different technique, involving extensive formal and numerical calculations, as well. Also, in the present talk, we will deal with the issue of the existence of primitive integral elements having index divisible by fixed primes in one parametric family of bicyclic biquadratic fields. This problem comes down to the resolution p-adic analogue of the index form equations in a given family of biquadratic fields. In the last part of the talk, we will consider the problem of computing relative power integral bases in one family of quartic extensions of imaginary quadratic fields. We will recall the main result and briefly describe the proof. This is joint work with Zrinka Franušić.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Split

Profili:

Avatar Url Borka Jadrijević (autor)


Citiraj ovu publikaciju:

Borka Jadrijević
Determining elements of minimal index in some parametric families of bicyclic biquadratic fields // Monogenity and power integral bases
Debrecen, Mađarska, 2021. (pozvano predavanje, podatak o recenziji nije dostupan, neobjavljeni rad, znanstveni)
Borka Jadrijević (2021) Determining elements of minimal index in some parametric families of bicyclic biquadratic fields. U: Monogenity and power integral bases.
@article{article, year = {2021}, keywords = {minimal index, index form equation, bicyclic biquadratic fields, p-adic version of the index form equations, relative power integral bases, system of relative Pellian equations}, title = {Determining elements of minimal index in some parametric families of bicyclic biquadratic fields}, keyword = {minimal index, index form equation, bicyclic biquadratic fields, p-adic version of the index form equations, relative power integral bases, system of relative Pellian equations}, publisherplace = {Debrecen, Ma\djarska} }
@article{article, year = {2021}, keywords = {minimal index, index form equation, bicyclic biquadratic fields, p-adic version of the index form equations, relative power integral bases, system of relative Pellian equations}, title = {Determining elements of minimal index in some parametric families of bicyclic biquadratic fields}, keyword = {minimal index, index form equation, bicyclic biquadratic fields, p-adic version of the index form equations, relative power integral bases, system of relative Pellian equations}, publisherplace = {Debrecen, Ma\djarska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font