Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1104358

Existence of a weak solution to a 3d nonlinear, moving boundary FSI problem


Galić, Marija
Existence of a weak solution to a 3d nonlinear, moving boundary FSI problem // Applied Math/Analysis Seminar, UC Berkeley
Berkeley (CA), Sjedinjene Američke Države, 2020. (predavanje, nije recenziran, neobjavljeni rad, znanstveni)


CROSBI ID: 1104358 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Existence of a weak solution to a 3d nonlinear, moving boundary FSI problem

Autori
Galić, Marija

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni

Skup
Applied Math/Analysis Seminar, UC Berkeley

Mjesto i datum
Berkeley (CA), Sjedinjene Američke Države, 31.01.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Nije recenziran

Ključne riječi
FSI problem, Navier-Stokes equations, moving boundary, weak solutions

Sažetak
We consider a nonlinear, moving boundary, fluid-structure interaction problem between an incompressible, viscous fluid flow, and an elastic structure composed of a cylindrical shell supported by a mesh-like elastic structure. The fluid flow is modeled by the time-dependent Navier-Stokes equations in a three-dimensional cylindrical domain, while the cylindrical shell is described by the two- dimensional linearly elastic Koiter shell equations allowing displacements in all three spatial directions. The mesh-like structure is modeled as a one-dimensional hyperbolic net made of linearly elastic curved rods. The fluid and the mesh-supported structure are coupled via the kinematic and dynamic boundary coupling conditions describing continuity of velocity and balance of contact forces at the fluid- structure interface. We prove the existence of a weak solution to this nonlinear, moving boundary problem by using the time- discretization via Lie operator splitting method, Arbitrary Lagrangian-Eulerian mapping and non-trivial compactness result. This is a joint work with Sunčica Čanić and Boris Muha.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Marija Galić (autor)


Citiraj ovu publikaciju:

Galić, Marija
Existence of a weak solution to a 3d nonlinear, moving boundary FSI problem // Applied Math/Analysis Seminar, UC Berkeley
Berkeley (CA), Sjedinjene Američke Države, 2020. (predavanje, nije recenziran, neobjavljeni rad, znanstveni)
Galić, M. (2020) Existence of a weak solution to a 3d nonlinear, moving boundary FSI problem. U: Applied Math/Analysis Seminar, UC Berkeley.
@article{article, author = {Gali\'{c}, Marija}, year = {2020}, keywords = {FSI problem, Navier-Stokes equations, moving boundary, weak solutions}, title = {Existence of a weak solution to a 3d nonlinear, moving boundary FSI problem}, keyword = {FSI problem, Navier-Stokes equations, moving boundary, weak solutions}, publisherplace = {Berkeley (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Gali\'{c}, Marija}, year = {2020}, keywords = {FSI problem, Navier-Stokes equations, moving boundary, weak solutions}, title = {Existence of a weak solution to a 3d nonlinear, moving boundary FSI problem}, keyword = {FSI problem, Navier-Stokes equations, moving boundary, weak solutions}, publisherplace = {Berkeley (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }




Contrast
Increase Font
Decrease Font
Dyslexic Font