Pregled bibliografske jedinice broj: 1104345
Existence of a weak solution to a 3d nonlinear, moving boundary FSI problem
Existence of a weak solution to a 3d nonlinear, moving boundary FSI problem // Seminar on PDEs, Institute of Mathematics of the Czech Academy of Sciences
Prag, Češka Republika, 2020. (predavanje, nije recenziran, neobjavljeni rad, znanstveni)
CROSBI ID: 1104345 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Existence of a weak solution to a 3d nonlinear,
moving boundary FSI problem
Autori
Galić, Marija
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
Seminar on PDEs, Institute of Mathematics of the Czech Academy of Sciences
Mjesto i datum
Prag, Češka Republika, 06.10.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
FSI problem, Navier-Stokes equations, moving boundary, weak solutions
Sažetak
We consider a nonlinear, moving boundary, fluid-structure interaction problem between an incompressible, viscous fluid flow, and an elastic structure composed of a cylindrical shell supported by a mesh-like elastic structure. The fluid flow is modeled by the time-dependent Navier-Stokes equations in a three-dimensional cylindrical domain, while the cylindrical shell is described by the two- dimensional linearly elastic Koiter shell equations allowing displacements in all three spatial directions. The mesh-like structure is modeled as a one-dimensional hyperbolic net made of linearly elastic curved rods. The fluid and the mesh-supported structure are coupled via the kinematic and dynamic boundary coupling conditions describing continuity of velocity and balance of contact forces at the fluid- structure interface. We prove the existence of a weak solution to this nonlinear, moving boundary problem by using the time- discretization via Lie operator splitting method, Arbitrary Lagrangian-Eulerian mapping and non-trivial compactness result. This is a joint work with Sunčica Čanić and Boris Muha.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Marija Galić
(autor)