Pregled bibliografske jedinice broj: 1104321
A Generalization of the Lions-Aubin-Simon Compactness Lemma to Problems on Moving Domains
A Generalization of the Lions-Aubin-Simon Compactness Lemma to Problems on Moving Domains // SIAM Conference on Analysis of Partial Differential Equations
Baltimore (MD), Sjedinjene Američke Države, 2017. str. 65-65 (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 1104321 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Generalization of the Lions-Aubin-Simon
Compactness Lemma to Problems on Moving Domains
Autori
Muha, Boris
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
SIAM Conference on Analysis of Partial Differential Equations
/ - , 2017, 65-65
Skup
SIAM Conference on Analysis of Partial Differential Equations
Mjesto i datum
Baltimore (MD), Sjedinjene Američke Države, 09.12.2017. - 12.12.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Aubin-Lions-Simon lemma ; generalized Bochner spaces ; moving domains ; fluid-structure interaction
Sažetak
We are interested in studying compactness of sequences that approximate functions u(t, x) in Bochner spaces L2(0, T ; X(t)), where X(t) is a Hilbert space, which depends on time. Problems of this type arise, for example, in studying evolution problems modeled by partial differential equations defined on domains that depend on time. Examples include general moving-boundary problems, or more particularly, fluid flows in time-dependent fluid domains that may either be given a priori, or in fluid domains that are not known a priori but depend on the solution of a fluidstructure interaction problem. In the latter case the elastodynamics of a compliant (elastic, or viscoelastic) structure determines the fluid domain. Thus, the spatial domain depends on time through the unknowns of the problem, giving rise to a strong geometric nonlinearity. T
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Boris Muha
(autor)