Pregled bibliografske jedinice broj: 1104300
Analysis of a Fluid-Structure Interaction Problem with the Slip Boundary Condition
Analysis of a Fluid-Structure Interaction Problem with the Slip Boundary Condition // The 11th AIMS Conference on Dynamical Systems, Differential Equations and Applications
Orlando (FL), Sjedinjene Američke Države, 2016. str. 127-127 (pozvano predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 1104300 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analysis of a Fluid-Structure Interaction Problem
with the Slip Boundary Condition
Autori
Muha, Boris
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
The 11th AIMS Conference on Dynamical Systems, Differential Equations and Applications
/ - , 2016, 127-127
Skup
The 11th AIMS Conference on Dynamical Systems, Differential Equations and Applications
Mjesto i datum
Orlando (FL), Sjedinjene Američke Države, 01.07.2016. - 05.07.2016
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Fluid-structure interaction ; slip boundary condition ; weak solutions
Sažetak
We study a nonlinear, moving boundary fluidstructure interaction (FSI) problem between an incompressible, viscous Newtonian fluid, modeled by the 2D Navier-Stokes equations, and an elastic structure modeled by the shell or plate equations. The fluid and structure are coupled via the Navier slip boundary condition and balance of contact forces at the fluid-structure interface. The slip boundary condition might be more realistic than the classical noslip boundary condition in situations, e.g., when the structure is “rough“, and in modeling FSI dynamics near, or at a contact. Cardiovascular tissue and cellseeded tissue constructs, which consist of grooves in tissue sca↵olds that are lined with cells, are examples of “rough“ elastic interfaces interacting with an incompressible, viscous fluid. The problem of heart valve closure is an example of a FSI problem with a contact involving elastic interfaces. We design a stable partitioned numerical scheme for the considered problem and prove the existence of a weak solution to this class of problems by proving that the proposed scheme is convergent.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-UIP-2013-11-9477 - MAtematička analiza multifizikalnih problema koji uključuju tanke i kompozitne strukture i fluide (MAMPITCoStruFl) (Velčić, Igor, HRZZ ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Boris Muha
(autor)