Pregled bibliografske jedinice broj: 1104291
A generalization of the Aubin-Lions-Simon compactness Lemma for problems on moving domains
A generalization of the Aubin-Lions-Simon compactness Lemma for problems on moving domains // IFIP TC 7 Conference 2018 on System Modelling and Optimization
Essen, Njemačka, 2018. str. 60-60 (pozvano predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 1104291 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A generalization of the Aubin-Lions-Simon
compactness Lemma for problems on moving domains
Autori
Muha, Boris
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
IFIP TC 7 Conference 2018 on System Modelling and Optimization
/ - , 2018, 60-60
Skup
IFIP TC 7 Conference 2018 on System Modelling and Optimization
Mjesto i datum
Essen, Njemačka, 23.07.2018. - 27.07.2018
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Aubin-Lions-Simon lemma ; generalized Bochner spaces ; moving domains ; fluid-structure interaction
Sažetak
This work addresses an extension of the Aubin- Lions-Simon compactness result to generalized Bochner spaces L^2(0, T ; H(t)), where H(t) is a family of Hilbert spaces, parameterized by t. A compactness result of this type is needed, e.g., in the study of the existence of weak solutions to a class of nonlinear evolution problems governed by partial differential equations defined on moving domains. We identify the conditions on the regularity of the domain motion in time, i.e., on the dependence of the functions spaces on time, under which our extension of the Aubin-Lions-Simon compactness result holds. Concrete examples of the application of the new compactness theorem are presented. They include a classical problem for the incompressible, Navier-Stokes equations defined on a given non-cylindrical domain, and a class of fluid-structure interaction problems for the incompressible, Navier-Stokes equations, coupled to the elastodynamics of a Koiter shell. Both the no-slip coupling condition, and the Navier slip coupling condition, are discussed. The compactness result presented in this talk is crucial in obtaining constructive existence proofs to nonlinear, moving boundary problems, using Rothe’s method.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Boris Muha
(autor)