Pregled bibliografske jedinice broj: 1104217
Stability of Discrete Empirical Interpolation and Gappy Proper Orthogonal Decomposition with Randomized and Deterministic Sampling Points
Stability of Discrete Empirical Interpolation and Gappy Proper Orthogonal Decomposition with Randomized and Deterministic Sampling Points // SIAM journal on scientific computing, 42 (2020), 5; A2837-A2864 doi:10.1137/19m1307391 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1104217 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Stability of Discrete Empirical Interpolation and
Gappy Proper Orthogonal Decomposition with Randomized
and Deterministic Sampling Points
Autori
Peherstorfer, Benjamin ; Drmač, Zlatko ; Gugercin, Serkan
Izvornik
SIAM journal on scientific computing (1064-8275) 42
(2020), 5;
A2837-A2864
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
model reduction, empirical interpolation, gappy proper orthogonal decomposition, noisy observations, nonlinear model reduction, randomized model reduction
Sažetak
This work investigates the stability of (discrete) empirical interpolation for nonlinear model reduction and state field approximation from measurements. Empirical interpolation derives approximations from a few samples (measurements) via interpolation in low- dimensional spaces. It has been observed that empirical interpolation can become unstable if the samples are perturbed due to, e.g., noise, turbulence, and numerical inaccuracies. The main contribution of this work is a probabilistic analysis that shows that stable approximations are obtained if samples are randomized and if more samples than dimensions of the low-dimensional spaces are used. Oversampling, i.e., taking more sampling points than dimensions of the low-dimensional spaces, leads to approximations via regression and is known under the name of gappy proper orthogonal decomposition. Building on the insights of the probabilistic analysis, a deterministic sampling strategy is presented that aims to achieve lower approximation errors with fewer points than randomized sampling by taking information about the low-dimensional spaces into account. Numerical results of reconstructing velocity fields from noisy measurements of combustion processes and model reduction in the presence of noise demonstrate the instability of empirical interpolation and the stability of gappy proper orthogonal decomposition with oversampling.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-6268 - Stohastičke aproksimacije malog ranga i primjene na parametarski ovisne probleme (RandLRAP) (Grubišić, Luka, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Zlatko Drmač
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus