Pregled bibliografske jedinice broj: 1104215
The Discrete Empirical Interpolation Method: Canonical Structure and Formulation in Weighted Inner Product Spaces
The Discrete Empirical Interpolation Method: Canonical Structure and Formulation in Weighted Inner Product Spaces // SIAM journal on matrix analysis and applications, 39 (2018), 3; 1152-1180 doi:10.1137/17m1129635 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1104215 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The Discrete Empirical Interpolation Method: Canonical Structure and Formulation in Weighted Inner Product Spaces
Autori
Drmač, Zlatko ; Saibaba, Arvind Krishna
Izvornik
SIAM journal on matrix analysis and applications (0895-4798) 39
(2018), 3;
1152-1180
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
empirical interpolation, Galerkin projection, generalized empirical interpolation, nonlinear model reduction, oblique projection, proper orthogonal decomposition, parametrized-background data-weak approach, rank revealing QR factorization, weighted inner product
Sažetak
New contributions are offered to the theory and numerical implementation of the discrete empirical interpolation method (DEIM). A substantial tightening of the error bound for the DEIM oblique projection is achieved by index selection via a strong rank revealing QR factorization. This removes the exponential factor in the dimension of the search space from the DEIM projection error and allows sharper a priori error bounds. A well-known canonical structure of pairs of projections is used to reveal canonical structure of DEIM. Further, the DEIM approximation is formulated in weighted inner product defined by a real symmetric positive-definite matrix $W$. The weighted DEIM ($W$-DEIM) can be interpreted as a numerical implementation of the generalized empirical interpolation method (GEIM) and the more general parametrized-background data-weak (PBDW) approach. Also, it can be naturally deployed in the framework when the POD Galerkin projection is formulated in a discretization of a suitable energy (weighted) inner product such that the projection preserves important physical properties, e.g., stability. While the theoretical foundations of weighted POD and the GEIM are available in the more general setting of function spaces, this paper focuses to the gap between sound functional analysis and the core numerical linear algebra. The new proposed algorithms allow different forms of $W$-DEIM for pointwise and generalized interpolation. For the generalized interpolation, our bounds show that the condition number of $W$ does not affect the accuracy, and for pointwise interpolation the condition number of the weight matrix $W$ enters the bound essentially as $\sqrt{; ; \min_{; ; D={; ; diag}; ; }; ; \kappa_2(DWD)}; ; $, where $\kappa_2(W)=\|W\|_2 \|W^{; ; -1}; ; \|_2$ is the spectral condition number.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-9345 - Matematičko modeliranje, analiza i računanje s primjenama na kompleksne mehaničke sustave (MMACACMS) (Drmač, Zlatko, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Zlatko Drmač
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus