Pregled bibliografske jedinice broj: 1104211
Predicting the Critical Number of Layers for Hierarchical Support Vector Regression
Predicting the Critical Number of Layers for Hierarchical Support Vector Regression // Entropy (Basel. Online), 23 (2021), 1; 37, 16 doi:10.3390/e23010037 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1104211 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Predicting the Critical Number of Layers for Hierarchical Support Vector Regression
Autori
Mohr, Ryan ; Fonoberova, Maria ; Drmač, Zlatko ; Manojlović, Iva ; Mezić, Igor
Izvornik
Entropy (Basel. Online) (1099-4300) 23
(2021), 1;
37, 16
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
support vector regression ; Fourier transform ; dynamic mode decomposition ; Koopman operator
Sažetak
Hierarchical support vector regression (HSVR) models a function from data as a linearcombination of SVR models at a range of scales, starting at a coarse scale and moving to finer scalesas the hierarchy continues. In the original formulation of HSVR, there were no rules for choosingthe depth of the model. In this paper, we observe in a number of models a phase transition in thetraining error—the error remains relatively constant as layers are added, until a critical scale is passed, at which point the training error drops close to zero and remains nearly constant for added layers.We introduce a method to predict this critical scale a priori with the prediction based on the supportof either a Fourier transform of the data or the Dynamic Mode Decomposition (DMD) spectrum. Thisallows us to determine the required number of layers prior to training any model
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-6268 - Stohastičke aproksimacije malog ranga i primjene na parametarski ovisne probleme (RandLRAP) (Grubišić, Luka, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus