Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1104169

RANSAC-Based Signal Denoising Using Compressive Sensing


Stanković, Ljubiša; Brajović, Miloš; Stanković, Isidora; Lerga, Jonatan; Daković, Miloš
RANSAC-Based Signal Denoising Using Compressive Sensing // Circuits, systems, and signal processing, 2021 (2021), 40; 3907-3928 doi:10.1007/s00034-021-01654-4 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1104169 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
RANSAC-Based Signal Denoising Using Compressive Sensing

Autori
Stanković, Ljubiša ; Brajović, Miloš ; Stanković, Isidora ; Lerga, Jonatan ; Daković, Miloš

Izvornik
Circuits, systems, and signal processing (0278-081X) 2021 (2021), 40; 3907-3928

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Sparse Signals ; Robust Signal Processing ; RANSAC ; Impulsive Noise ; Compressive Sensing ; Sample Selection ; DFT

Sažetak
In this paper, we present an approach to the reconstruction of signals exhibiting sparsity in a transformation domain, having some heavily disturbed samples. This sparsity-driven signal recovery exploits a carefully suited random sampling consensus (RANSAC) methodology for the selection of a subset of inlier samples. To this aim, two fundamental properties are used: A signal sample represents a linear combination of the sparse coefficients, whereas the disturbance degrades the original signal sparsity. The properly selected samples are further used as measurements in the sparse signal reconstruction, performed using algorithms from the compressive sensing framework. Besides the fact that the disturbance degrades signal sparsity in the transformation domain, no other disturbance- related assumptions are made—there are no special requirements regarding its statistical behavior or the range of its values. As a case study, the discrete Fourier transform is considered as a domain of signal sparsity, owing to its significance in signal processing theory and applications. Numerical results strongly support the presented theory. In addition, the exact relation for the signal-to-noise ratio of the reconstructed signal is also presented. This simple result, which conveniently characterizes the RANSAC-based reconstruction performance, is numerically confirmed by a set of statistical examples.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Jonatan Lerga (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Stanković, Ljubiša; Brajović, Miloš; Stanković, Isidora; Lerga, Jonatan; Daković, Miloš
RANSAC-Based Signal Denoising Using Compressive Sensing // Circuits, systems, and signal processing, 2021 (2021), 40; 3907-3928 doi:10.1007/s00034-021-01654-4 (međunarodna recenzija, članak, znanstveni)
Stanković, L., Brajović, M., Stanković, I., Lerga, J. & Daković, M. (2021) RANSAC-Based Signal Denoising Using Compressive Sensing. Circuits, systems, and signal processing, 2021 (40), 3907-3928 doi:10.1007/s00034-021-01654-4.
@article{article, author = {Stankovi\'{c}, Ljubi\v{s}a and Brajovi\'{c}, Milo\v{s} and Stankovi\'{c}, Isidora and Lerga, Jonatan and Dakovi\'{c}, Milo\v{s}}, year = {2021}, pages = {3907-3928}, DOI = {10.1007/s00034-021-01654-4}, keywords = {Sparse Signals, Robust Signal Processing, RANSAC, Impulsive Noise, Compressive Sensing, Sample Selection, DFT}, journal = {Circuits, systems, and signal processing}, doi = {10.1007/s00034-021-01654-4}, volume = {2021}, number = {40}, issn = {0278-081X}, title = {RANSAC-Based Signal Denoising Using Compressive Sensing}, keyword = {Sparse Signals, Robust Signal Processing, RANSAC, Impulsive Noise, Compressive Sensing, Sample Selection, DFT} }
@article{article, author = {Stankovi\'{c}, Ljubi\v{s}a and Brajovi\'{c}, Milo\v{s} and Stankovi\'{c}, Isidora and Lerga, Jonatan and Dakovi\'{c}, Milo\v{s}}, year = {2021}, pages = {3907-3928}, DOI = {10.1007/s00034-021-01654-4}, keywords = {Sparse Signals, Robust Signal Processing, RANSAC, Impulsive Noise, Compressive Sensing, Sample Selection, DFT}, journal = {Circuits, systems, and signal processing}, doi = {10.1007/s00034-021-01654-4}, volume = {2021}, number = {40}, issn = {0278-081X}, title = {RANSAC-Based Signal Denoising Using Compressive Sensing}, keyword = {Sparse Signals, Robust Signal Processing, RANSAC, Impulsive Noise, Compressive Sensing, Sample Selection, DFT} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font