Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1103977

Sequence dominance in shift-invariant spaces


Berić, Tomislav
Sequence dominance in shift-invariant spaces // Zagreb Workshop on Operator Theory
Zagreb, Hrvatska, 2020. str. 19-20 (predavanje, nije recenziran, kratko priopćenje, znanstveni)


CROSBI ID: 1103977 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Sequence dominance in shift-invariant spaces

Autori
Berić, Tomislav

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, kratko priopćenje, znanstveni

Skup
Zagreb Workshop on Operator Theory

Mjesto i datum
Zagreb, Hrvatska, 29.06.2020. - 30.06.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Nije recenziran

Ključne riječi
Shift invariant systems, Bases, Frames, Riesz bases, Periodization function, Besselian property, Hilbertian property

Sažetak
For a given function $\psi \in L^2(\R)$ we study the system of integer translates $B_\psi = \left\{; ; T_k \psi : k \in \Z \right\}; ; $, where $T_k$ is the translation operator. Numerous properties of $B_\psi$ can be described via its periodization function $p_\psi(\xi) = \sum_{; ; k \in \Z}; ; \left| \widehat{; ; \psi}; ; (\xi + k) \right|^2$. For $\psi$ we define its associated coefficient space $\Cof_\psi$ as the set of all the sequences $\left( c_k \right)_{; ; k \in \Z}; ; $ for which $\sum c_k T_k \psi$ converges in the $L^2$ norm (with respect to the ordering $0, -1, 1, -2, 2, \ldots$ of $\Z$). There are two important special cases: when $\Cof_\psi$ contains $\ell^2(\Z)$, in which case we say that $B_\psi$ has the $(H)$--property, and when $\Cof_\psi$ is contained in $\ell^2(\Z)$, when we say that $B_\psi$ has the $(B)$--property. The $(B)$--property seems to be much more difficult to characterize and we will characterize it in two important special cases: when the periodization function has a certain degree of smoothness and when the system $B_\psi$ has the $(H)$--property alongside the $(B)$--property. This is joint work with Hrvoje Šikić.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-1046 - Operatori na C*-algebrama i Hilbertovim modulima (OCAHM) (Bakić, Damir, HRZZ - 2016-06) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Tomislav Berić (autor)

Poveznice na cjeloviti tekst rada:

web.math.pmf.unizg.hr web.math.pmf.unizg.hr

Citiraj ovu publikaciju:

Berić, Tomislav
Sequence dominance in shift-invariant spaces // Zagreb Workshop on Operator Theory
Zagreb, Hrvatska, 2020. str. 19-20 (predavanje, nije recenziran, kratko priopćenje, znanstveni)
Berić, T. (2020) Sequence dominance in shift-invariant spaces. U: Zagreb Workshop on Operator Theory.
@article{article, author = {Beri\'{c}, Tomislav}, year = {2020}, pages = {19-20}, keywords = {Shift invariant systems, Bases, Frames, Riesz bases, Periodization function, Besselian property, Hilbertian property}, title = {Sequence dominance in shift-invariant spaces}, keyword = {Shift invariant systems, Bases, Frames, Riesz bases, Periodization function, Besselian property, Hilbertian property}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Beri\'{c}, Tomislav}, year = {2020}, pages = {19-20}, keywords = {Shift invariant systems, Bases, Frames, Riesz bases, Periodization function, Besselian property, Hilbertian property}, title = {Sequence dominance in shift-invariant spaces}, keyword = {Shift invariant systems, Bases, Frames, Riesz bases, Periodization function, Besselian property, Hilbertian property}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font