Pregled bibliografske jedinice broj: 1103959
Iterations of the generalized Gram–Schmidt procedure for generating Parseval frames
Iterations of the generalized Gram–Schmidt procedure for generating Parseval frames // 6. hrvatski matematički kongres
Zagreb, Hrvatska, 2016. str. 1-13 (predavanje, nije recenziran, kratko priopćenje, znanstveni)
CROSBI ID: 1103959 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Iterations of the generalized Gram–Schmidt
procedure for generating Parseval frames
Autori
Berić, Tomislav
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, kratko priopćenje, znanstveni
Skup
6. hrvatski matematički kongres
Mjesto i datum
Zagreb, Hrvatska, 14.06.2016. - 17.06.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
frames, Parseval frames, Gram-Schmidt procedure
Sažetak
A sequence $(f_i)_{; ; i \in I}; ; $ in a Hilbert space $H$ is called a frame for $H$ if there exist constants $0 < A \le B < \infty$ such that $$ A \| f \|^2 \le \sum_{; ; i \in I}; ; | \left< f, f_i \right> |^2 \le B \| f \|^2, \quad \text{; ; for all }; ; f \in H. $$ Among all frames, those for which $A = B = 1$, called Parseval frames, have proved to be most useful in applications since they provide a simple reconstruction formula $$ f = \sum_{; ; i \in I}; ; \left< f, f_i \right> f_i, \quad \text{; ; for all }; ; f \in H. $$ In this paper we investigate some properties of the generalized Gram--Schmidt procedure (GGSP) for generating Parseval frames which was first introduced by Casazza and Kutyniok (2007). Motivated by iterative algorithms such as the frame algorithm for vector reconstruction and the gradient descent of the frame potential used for construction of approximate unit-norm tight frames, we investigate iterations of the GGSP and its limit. We show that regardless of the starting frame, in the limit case we always get an orthonormal basis with added zeros. Moreover, the position of zero vectors is known in advance.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-1046 - Operatori na C*-algebrama i Hilbertovim modulima (OCAHM) (Bakić, Damir, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Tomislav Berić
(autor)