Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1103857

On projections arising from isometries with finite spectrum on Banach spaces


Ilišević, Dijana
On projections arising from isometries with finite spectrum on Banach spaces // 8th Linear Algebra Workshop
Ljubljana, Slovenija, 2017. str. 1-1 (pozvano predavanje, međunarodna recenzija, neobjavljeni rad, znanstveni)


CROSBI ID: 1103857 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On projections arising from isometries with finite spectrum on Banach spaces

Autori
Ilišević, Dijana

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni

Skup
8th Linear Algebra Workshop

Mjesto i datum
Ljubljana, Slovenija, 12.06.2017. - 16.06.2017

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
isometry, spectrum, projection

Sažetak
If P is an orthogonal projection on a Hilbert space, then it can be written in the form P = (I+T)/2 for an isometry (a unitary operator) T satisfying T^2 = I. When looking for a suitable generalization of orthogonal projections in the Banach space setting, the main task is to get rid of the involution in defining an orthogonal projection. One way is to consider Banach space projections that can be written as the average of the identity with an isometric reflection. If T is an isometric reflection then σ(T) = {; ; ; 1, −1}; ; ; , and for P = (I+T)/2 we have T = P − (I − P). More generally, if T is an isometry such that σ(T) = {; ; ; 1, λ}; ; ; with λ \neq 1, then there exists a projection P such that T = P + λ(I − P) ; in this case P is called a generalized bicircular projection. One can also consider generalized n-circular projections that arise from isometries with n distinct eigenvalues. In this talk we shall describe the structure of generalized n-circular projections on some important complex Banach spaces, mostly in the case n=2, but also a few for n \geq 3.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-1046 - Operatori na C*-algebrama i Hilbertovim modulima (OCAHM) (Bakić, Damir, HRZZ - 2016-06) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Dijana Ilišević (autor)

Poveznice na cjeloviti tekst rada:

www.law05.si www.law05.si www.law05.si

Citiraj ovu publikaciju:

Ilišević, Dijana
On projections arising from isometries with finite spectrum on Banach spaces // 8th Linear Algebra Workshop
Ljubljana, Slovenija, 2017. str. 1-1 (pozvano predavanje, međunarodna recenzija, neobjavljeni rad, znanstveni)
Ilišević, D. (2017) On projections arising from isometries with finite spectrum on Banach spaces. U: 8th Linear Algebra Workshop.
@article{article, author = {Ili\v{s}evi\'{c}, Dijana}, year = {2017}, pages = {1-1}, keywords = {isometry, spectrum, projection}, title = {On projections arising from isometries with finite spectrum on Banach spaces}, keyword = {isometry, spectrum, projection}, publisherplace = {Ljubljana, Slovenija} }
@article{article, author = {Ili\v{s}evi\'{c}, Dijana}, year = {2017}, pages = {1-1}, keywords = {isometry, spectrum, projection}, title = {On projections arising from isometries with finite spectrum on Banach spaces}, keyword = {isometry, spectrum, projection}, publisherplace = {Ljubljana, Slovenija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font