Pregled bibliografske jedinice broj: 1103857
On projections arising from isometries with finite spectrum on Banach spaces
On projections arising from isometries with finite spectrum on Banach spaces // 8th Linear Algebra Workshop
Ljubljana, Slovenija, 2017. str. 1-1 (pozvano predavanje, međunarodna recenzija, neobjavljeni rad, znanstveni)
CROSBI ID: 1103857 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On projections arising from isometries with finite
spectrum on Banach spaces
Autori
Ilišević, Dijana
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
8th Linear Algebra Workshop
Mjesto i datum
Ljubljana, Slovenija, 12.06.2017. - 16.06.2017
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
isometry, spectrum, projection
Sažetak
If P is an orthogonal projection on a Hilbert space, then it can be written in the form P = (I+T)/2 for an isometry (a unitary operator) T satisfying T^2 = I. When looking for a suitable generalization of orthogonal projections in the Banach space setting, the main task is to get rid of the involution in defining an orthogonal projection. One way is to consider Banach space projections that can be written as the average of the identity with an isometric reflection. If T is an isometric reflection then σ(T) = {; ; ; 1, −1}; ; ; , and for P = (I+T)/2 we have T = P − (I − P). More generally, if T is an isometry such that σ(T) = {; ; ; 1, λ}; ; ; with λ \neq 1, then there exists a projection P such that T = P + λ(I − P) ; in this case P is called a generalized bicircular projection. One can also consider generalized n-circular projections that arise from isometries with n distinct eigenvalues. In this talk we shall describe the structure of generalized n-circular projections on some important complex Banach spaces, mostly in the case n=2, but also a few for n \geq 3.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-1046 - Operatori na C*-algebrama i Hilbertovim modulima (OCAHM) (Bakić, Damir, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Dijana Ilišević
(autor)