Pregled bibliografske jedinice broj: 1103769
Two-sided multiplications and phantom line bundles
Two-sided multiplications and phantom line bundles // XIX Geometrical Seminar
Zlatibor, Srbija, 2016. str. 1-1 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1103769 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Two-sided multiplications and phantom line bundles
Autori
Gogić, Ilja
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
XIX Geometrical Seminar
Mjesto i datum
Zlatibor, Srbija, 28.08.2016. - 04.09.2016
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
C*-algebra ; Homogeneous ; Two-sided multiplication ; Elementary operator ; Complex line bundle
Sažetak
Two-sided multiplications M_{; ; a, b}; ; :x→axb on C*- algebras A, where a and b are elements of A, are usually considered as basic building blocks for more general types of operators on A, as their finite sums (i.e. elementary operators) comprise both inner derivations and inner automorphisms. It is therefore natural to ask which operators φ:A→A can be obtained as operator-norm limits of TMs. Let us denote by TM(A) the set of all TMs on A. We first show that TM(A) is closed in the operator norm for all prime C*-algebras A. On the other hand, if A\cong Γ_0(E) is an n-homogeneous C*-algebra, where E is the canonical M_n-bundle over the primitive spectrum X of A, we show that TM(A) fails to be closed in the operator norm if and only if there exists a σ-compact open subset U of X and a phantom complex line subbundle L of E over U (i.e. L is not globally trivial, but is trivial on all compact subsets of U). This phenomenon occurs whenever A is non-commutative and X is a CW-complex (or a topological manifold) of dimension 3≤d<∞. This is a joint work with Richard M. Timoney (Trinity College Dublin).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Ilja Gogić
(autor)