Pregled bibliografske jedinice broj: 1103665
Zagier's sporadic sequences and Atkin and Swinnerton-Dyer congruences
Zagier's sporadic sequences and Atkin and Swinnerton-Dyer congruences // Joint meeting UMI-SIMAI-PTM
Wrocław, Poljska, 2018. str. 1-1 (predavanje, podatak o recenziji nije dostupan, sažetak, znanstveni)
CROSBI ID: 1103665 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Zagier's sporadic sequences and Atkin and
Swinnerton-Dyer congruences
Autori
Kazalicki, Matija
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
Joint meeting UMI-SIMAI-PTM
Mjesto i datum
Wrocław, Poljska, 17.09.2018. - 20.09.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Podatak o recenziji nije dostupan
Ključne riječi
modular forms for non-congruence subgroups
Sažetak
In 1979, in the course of his proof of the irrationality of $\zeta(2)$ Robert Ap\'ery introduced numbers $b_n = \sum_{; ; k=0}; ; ^n {; ; n \choose k}; ; ^2{; ; n+k \choose k}; ; $ that are surprisingly integral solutions of recursive relations $$(n+1)^2 u_{; ; n+1}; ; - (11n^2+11n+3)u_n-n^2u_{; ; n-1}; ; = 0.$$ Zagier performed a computer search on first 100 million triples $(A, B, C)\in \Z^3$ and found that the recursive relation generalizing $b_n$ $$(n+1)u_{; ; n+1}; ; - (An^2+An+B)u_n + C n ^2 u_{; ; n- 1}; ; =0, $$ with the initial conditions $u_{; ; -1}; ; =0$ and $u_0=1$ has (nondegenerate i.e. $C(A^2-4C)\ne 0$) integral solution for only six more triples (whose solutions are so called sporadic sequences) . Stienstra and Beukers showed that the generating function of Ap\'ery's numbers $b_n$ is a holomorphic solution of Picard-Fuchs differential equation of elliptic surface $\mathcal{; ; S}; ; :X(Y-Z)(Z-X)-t(X-Y)YZ=0$. Using this connection they proved that for prime $p\ge 5$ \begin{; ; equation*}; ; b_{; ; (p-1)/2}; ; \equiv \begin{; ; cases}; ; 4a^2-2p \pmod{; ; p}; ; \textrm{; ; if }; ; p = a^2+b^2, \textrm{; ; a odd}; ; \\ 0 \pmod{; ; p}; ; \textrm{; ; if }; ; p\equiv 3 \pmod{; ; 4}; ; .\end{; ; cases}; ; \end{; ; equation*}; ; Recently, Osburn and Straub proved similar congruences for all but one of the six Zagier's sporadic sequences (three cases were already known to be true by the work of Stienstra and Beukers) and conjectured the congruence for the sixth sequence (which is a solution of recursion determined by triple $(17, 6, 72)$. In this talk we will prove that remaining congruence.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
--KK.01.1.1.01.0004 - Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri (QuantiXLie) (Buljan, Hrvoje; Pandžić, Pavle) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Matija Kazalicki
(autor)