Pregled bibliografske jedinice broj: 1103540
Strong Birkhoff-James orthogonality in Hilbert C*- modules
Strong Birkhoff-James orthogonality in Hilbert C*- modules // Hilbert C*-Modules Online Weekend
Njemačka; Ruska Federacija, 2020. str. 1-1 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1103540 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Strong Birkhoff-James orthogonality in Hilbert C*-
modules
Autori
Arambašić, Ljiljana
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
Hilbert C*-Modules Online Weekend
Mjesto i datum
Njemačka; Ruska Federacija, 05.12.2020. - 06.12.2020
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
strong Birkhoff-James orthogonality, C*-algebra
Sažetak
We say that two elements of a Hilbert C*-module are orthogonal if their C*-valued inner product is 0. In a Hilbert C*-module, besides this type of orthogonality, we can study all other orthogonalities defined in a general normed space. One which is most frequently used is Birkhoff–James orthogonality - if x, y are elements of a normed linear space X, then x is orthogonal to y in the BJ sense if ∥x + λy∥ ≥ ∥x∥ for all scalars λ. As we usually do in Hilbert C*-modules, we study analogous relations obtained by replacing scalars with elements of the underlying C*- algebra, or the norm with the C*- valued ”norm”. It often happens that these relations are very strong and coincide with (the first mentioned) orthogonality in a Hilbert C*- module, but not always. This leads to the notion of the strong (also called modular) BJ orthogonality which is the main topic of this talk. This is a joint work with A. Guterman, B. Kuzma, R. Rajić and S. Zhilina.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-1046 - Operatori na C*-algebrama i Hilbertovim modulima (OCAHM) (Bakić, Damir, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Ljiljana Arambašić
(autor)