Pregled bibliografske jedinice broj: 1103529
Congruences for sporadic sequences and modular forms for non-congruence subgroups
Congruences for sporadic sequences and modular forms for non-congruence subgroups // The fifth mini symposium of the Roman Number Theory Association Universita Roma Tre - Abstracts
Rim, Italija, 2019. str. 1-1 (predavanje, podatak o recenziji nije dostupan, sažetak, znanstveni)
CROSBI ID: 1103529 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Congruences for sporadic sequences and modular
forms for non-congruence subgroups
Autori
Kazalicki, Matija
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
The fifth mini symposium of the Roman Number Theory Association Universita Roma Tre - Abstracts
/ - , 2019, 1-1
Skup
The fifth mini symposium of the Roman Number Theory Association Universita Roma Tre
Mjesto i datum
Rim, Italija, 10.04.2019. - 12.04.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Podatak o recenziji nije dostupan
Ključne riječi
modular forms for non-congruence subgroups
Sažetak
In the the proof of the irrationality of zeta(2) Apery introduced numbers bn=∑nk=0(nk)2(n+kk) that are integral solutions of certain recursive relation. Zagier found six more sequences with similar property (sporadic sequences). Stienstra and Beukers showed that there is mod p congruence between b_{; ; (p-1)/2}; ; and p-th Fourier coefficeint of certain modular form. Osburn and Straub proved similar congruences for all but one of six Zagier's sporadic sequences and conjectured congruence for sixth sequence. We prove that remaining congruence by studying Atkin and Swinnerton-Dyer congruences between Fourier coefficients of certain cusp form for non-congurence subgroup.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
--KK.01.1.1.01.0004 - Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri (QuantiXLie) (Buljan, Hrvoje; Pandžić, Pavle) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Matija Kazalicki
(autor)