Pregled bibliografske jedinice broj: 1103525
Congruences for sporadic sequences and modular forms for non-congruence subgroups
Congruences for sporadic sequences and modular forms for non-congruence subgroups // Representation Theory XVI: Abstracts of talks
Dubrovnik, Hrvatska, 2019. str. 15-15 (pozvano predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 1103525 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Congruences for sporadic sequences and modular
forms for non-congruence subgroups
Autori
Kazalicki, Matija
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Representation Theory XVI: Abstracts of talks
/ - , 2019, 15-15
Skup
Representation Theory XVI
Mjesto i datum
Dubrovnik, Hrvatska, 24.06.2019. - 29.06.2019
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
modular forms for non-congruence subgroups
Sažetak
In 1979, in the course of the proof of the irrationality of $\zeta(2)$ Robert Ap\'ery introduced numbers $b_n = \sum_{; ; k=0}; ; ^n {; ; n \choose k}; ; ^2{; ; n+k \choose k}; ; $ that are, surprisingly, integral solutions of recursive relations $$(n+1)^2 u_{; ; n+1}; ; - (11n^2+11n+3)u_n-n^2u_{; ; n-1}; ; = 0.$$ Zagier performed a computer search on first 100 million triples $(A, B, C)\in \mathbb{; ; Z}; ; ^3$ and found that the recursive relation generalizing $b_n$ $$(n+1)u_{; ; n+1}; ; - (An^2+An+B)u_n + C n ^2 u_{; ; n- 1}; ; =0, $$ with the initial conditions $u_{; ; -1}; ; =0$ and $u_0=1$ has (non-degenerate i.e. $C(A^2-4C)\ne 0$) integral solution for only six more triples (whose solutions are so called sporadic sequences) . Stienstra and Beukers showed that for the prime $p\ge 5$ \begin{; ; equation*}; ; b_{; ; (p-1)/2}; ; \equiv \begin{; ; cases}; ; 4a^2-2p \pmod{; ; p}; ; \textrm{; ; if }; ; p = a^2+b^2, \textrm{; ; a odd}; ; \\ 0 \pmod{; ; p}; ; \textrm{; ; if }; ; p\equiv 3 \pmod{; ; 4}; ; .\end{; ; cases}; ; \end{; ; equation*}; ; Recently, Osburn and Straub proved similar congruences for all but one of the six Zagier's sporadic sequences (three cases were already known to be true by the work of Stienstra and Beukers) and conjectured the congruence for the sixth sequence (which is a solution of recursion determined by triple $(17, 6, 72)$. In this talk we prove that remaining congruence by studying Atkin and Swinnerton-Dyer congruences between Fourier coefficients of certain cusp form for non-congurence subgroup.
Izvorni jezik
Hrvatski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
--KK.01.1.1.01.0004 - Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri (QuantiXLie) (Buljan, Hrvoje; Pandžić, Pavle) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Matija Kazalicki
(autor)