Pregled bibliografske jedinice broj: 1103244
D(n)-sets with square elements
D(n)-sets with square elements // Diophantine Problems, Determinism and Randomness / Tichy, Robert ; Rivat, Joël (ur.).
Marseille: Centre International de Rencontres Mathématique, 2020. 24, 1 (pozvano predavanje, podatak o recenziji nije dostupan, sažetak, znanstveni)
CROSBI ID: 1103244 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
D(n)-sets with square elements
Autori
Dujella, Andrej
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Diophantine Problems, Determinism and Randomness
/ Tichy, Robert ; Rivat, Joël - Marseille : Centre International de Rencontres Mathématique, 2020
Skup
Diophantine Problems, Determinism and Randomness
Mjesto i datum
Marseille, Francuska, 23.11.2020. - 27.11.2020
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Podatak o recenziji nije dostupan
Ključne riječi
diophantine triples ; diophantine quadruples ; elliptic curves
Sažetak
For an integer n, a set of distinct nonzero integers {; ; a1, a2, ...am}; ; such that aiaj+n is a perfect square for all 1 ≤ i < j ≤ m, is called a Diophantine m-tuple with the property D(n) or simply a D(n)-set. D(1)-sets are known as Diophantine m-tuples. When considering D(n)-sets, usually an integer n is fixed in advance. However, we may ask if a set can have the property D(n) for several different n’s. For example, {; ; 8, 21, 55}; ; is a D(1)-triple and D(4321)-triple. In a joint work with Adzaga, Kreso and Tadic, we presented several families of Diophantine triples which are D(n)- sets for two distinct n’s with n≠1. In a joint work with Petricevic we proved that there are infinitely many (essentially different) quadruples which are simultaneously D(n1)-quadruples and D(n2)-quadruples with n1≠n2. Morever, the elements in some of these quadruples are squares, so they are also D(0)-quadruples. E.g. {; ; 542, 1002, 1682, 3642}; ; is a D(81902), D(403202) and D(0)-quadruple. In this talk, we will describe methods used in constructions of mentioned triples and quadruples. We will also mention a work in progress with Kazalicki and Petricevic on D(n)- quintuples with square elements (so they are also D(0)-quintuples). There are infinitely many such quintuples. One example is a D(480480^2)-quintuple {; ; 225^2, 286^2, 819^2, 1408^2, 2548^2}; ; .
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-1313 - Diofantska geometrija i primjene (DIOPHANT) (Kazalicki, Matija, HRZZ - 2018-01) ( CroRIS)
--KK.01.1.1.01.0004 - Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri (QuantiXLie) (Buljan, Hrvoje; Pandžić, Pavle) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Andrej Dujella
(autor)