Pregled bibliografske jedinice broj: 1103162
Subsingular vectors in Verma modules, and tensor product of weight modules over the W(2,2)-algebra
Subsingular vectors in Verma modules, and tensor product of weight modules over the W(2,2)-algebra // Representation Theory XIII
Dubrovnik, Hrvatska, 2013. (pozvano predavanje, nije recenziran, neobjavljeni rad, znanstveni)
CROSBI ID: 1103162 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Subsingular vectors in Verma modules, and tensor product of weight
modules over the W(2,2)-algebra
Autori
Radobolja, Gordan
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
Representation Theory XIII
Mjesto i datum
Dubrovnik, Hrvatska, 21.06.2013. - 27.06.2013
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
subsingular vectors, Virasoro algebra, highest weight modules
Sažetak
Lie algebra W(2, 2) was first introduced by W. Zhang and C. Dong in 2009. as a part of classification of simple vertex operator algebras generated by two weight two vectors. It is an extension of a well known Virasoro algebra Vir, and its representation theory is somewhat similar to that of Vir. Criterion for irreducibility of Verma modules over W(2, 2) was given by Zhang and Dong. In this talk we will show that subsingular vectors may exist in Verma modules over the W(2, 2) and will present a subquotient structure of these modules. Furthermore, we will prove conditions for irreducibility of a tensor product of intermediate series module with a highest weight module. Relations to intertwining operators over the vertex operator algebra associated to W(2, 2) will be discussed.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Split
Profili:
Gordan Radobolja
(autor)