Pregled bibliografske jedinice broj: 1102968
A note on the Birkhoff ergodic theorem
A note on the Birkhoff ergodic theorem // Probability and Analysis
Będlewo, Poljska, 2017. (predavanje, nije recenziran, neobjavljeni rad, znanstveni)
CROSBI ID: 1102968 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A note on the Birkhoff ergodic theorem
Autori
Sandrić, Nikola
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
Probability and Analysis
Mjesto i datum
Będlewo, Poljska, 15.05.2017. - 19.05.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Birkhoff ergodic theorem ; ergodicity ; Markov process ; Wasserstein metric
Sažetak
The classical Birkhoff ergodic theorem states that for an ergodic Markov process the limiting behavior of the time average of a (integrable with respect to the invariant measure) function along the trajectories of the process, starting from the invariant measure, is a.s. constant and equals to the space average of the function with respect to the invariant measure. The crucial assumption here is that the process starts from the invariant measure, which is not always the case. In this talk, under the assumptions that the underlying process is a Markov process on metric space, that it admits an invariant probability measure and that its marginal distributions converge to the invariant measure in the $L^{; ; ; 1}; ; ; $-Wasserstein metric, we will show that the assertion of the Birkhoff ergodic theorem holds in probability and $L^{; ; ; p}; ; ; $, $p\geq1$, for any bounded Lipschitz function and any initial distribution of the process.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-3526 - Stohastičke metode u analitičkim i primijenjenim problemima (SMAAP) (Vondraček, Zoran, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Građevinski fakultet, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Nikola Sandrić
(autor)