Pregled bibliografske jedinice broj: 1102153
Generalized Heisenberg algebra applied to realizations of the orthogonal, Lorentz, and Poincaré algebras and their dual extensions
Generalized Heisenberg algebra applied to realizations of the orthogonal, Lorentz, and Poincaré algebras and their dual extensions // Journal of mathematical physics, 61 (2020), 051705, 13 doi:10.1063/5.0006184 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1102153 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Generalized Heisenberg algebra applied to realizations of the orthogonal, Lorentz, and Poincaré algebras and their dual extensions
Autori
Meljanac, Stjepan ; Martinić-Bilać, Tea ; Krešić-Jurić, Saša
Izvornik
Journal of mathematical physics (0022-2488) 61
(2020);
051705, 13
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Lie algebras ; realizations ; generalized Heisenberg algebra
Sažetak
We introduce the generalized Heisenberg algebra Hn and construct realizations of the orthogonal and Lorentz algebras by a formal power series in a semicompletion of Hn. The obtained realizations are given in terms of the generating function for the Bernoulli numbers. We also introduce an extension of the orthogonal and Lorentz algebras by quantum angles and study realizations of the extended algebras in Hn. Furthermore, we show that by extending the generalized Heisenberg algebra Hn, one can also obtain realizations of the Poincaré algebra and its extension by quantum angles.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Fizika
POVEZANOST RADA
Ustanove:
Institut "Ruđer Bošković", Zagreb,
Prirodoslovno-matematički fakultet, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus