Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1102153

Generalized Heisenberg algebra applied to realizations of the orthogonal, Lorentz, and Poincaré algebras and their dual extensions


Meljanac, Stjepan; Martinić-Bilać, Tea; Krešić-Jurić, Saša
Generalized Heisenberg algebra applied to realizations of the orthogonal, Lorentz, and Poincaré algebras and their dual extensions // Journal of mathematical physics, 61 (2020), 051705, 13 doi:10.1063/5.0006184 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1102153 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Generalized Heisenberg algebra applied to realizations of the orthogonal, Lorentz, and Poincaré algebras and their dual extensions

Autori
Meljanac, Stjepan ; Martinić-Bilać, Tea ; Krešić-Jurić, Saša

Izvornik
Journal of mathematical physics (0022-2488) 61 (2020); 051705, 13

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Lie algebras ; realizations ; generalized Heisenberg algebra

Sažetak
We introduce the generalized Heisenberg algebra Hn and construct realizations of the orthogonal and Lorentz algebras by a formal power series in a semicompletion of Hn. The obtained realizations are given in terms of the generating function for the Bernoulli numbers. We also introduce an extension of the orthogonal and Lorentz algebras by quantum angles and study realizations of the extended algebras in Hn. Furthermore, we show that by extending the generalized Heisenberg algebra Hn, one can also obtain realizations of the Poincaré algebra and its extension by quantum angles.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Fizika



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb,
Prirodoslovno-matematički fakultet, Split

Poveznice na cjeloviti tekst rada:

doi aip.scitation.org

Citiraj ovu publikaciju:

Meljanac, Stjepan; Martinić-Bilać, Tea; Krešić-Jurić, Saša
Generalized Heisenberg algebra applied to realizations of the orthogonal, Lorentz, and Poincaré algebras and their dual extensions // Journal of mathematical physics, 61 (2020), 051705, 13 doi:10.1063/5.0006184 (međunarodna recenzija, članak, znanstveni)
Meljanac, S., Martinić-Bilać, T. & Krešić-Jurić, S. (2020) Generalized Heisenberg algebra applied to realizations of the orthogonal, Lorentz, and Poincaré algebras and their dual extensions. Journal of mathematical physics, 61, 051705, 13 doi:10.1063/5.0006184.
@article{article, author = {Meljanac, Stjepan and Martini\'{c}-Bila\'{c}, Tea and Kre\v{s}i\'{c}-Juri\'{c}, Sa\v{s}a}, year = {2020}, pages = {13}, DOI = {10.1063/5.0006184}, chapter = {051705}, keywords = {Lie algebras, realizations, generalized Heisenberg algebra}, journal = {Journal of mathematical physics}, doi = {10.1063/5.0006184}, volume = {61}, issn = {0022-2488}, title = {Generalized Heisenberg algebra applied to realizations of the orthogonal, Lorentz, and Poincar\'{e} algebras and their dual extensions}, keyword = {Lie algebras, realizations, generalized Heisenberg algebra}, chapternumber = {051705} }
@article{article, author = {Meljanac, Stjepan and Martini\'{c}-Bila\'{c}, Tea and Kre\v{s}i\'{c}-Juri\'{c}, Sa\v{s}a}, year = {2020}, pages = {13}, DOI = {10.1063/5.0006184}, chapter = {051705}, keywords = {Lie algebras, realizations, generalized Heisenberg algebra}, journal = {Journal of mathematical physics}, doi = {10.1063/5.0006184}, volume = {61}, issn = {0022-2488}, title = {Generalized Heisenberg algebra applied to realizations of the orthogonal, Lorentz, and Poincar\'{e} algebras and their dual extensions}, keyword = {Lie algebras, realizations, generalized Heisenberg algebra}, chapternumber = {051705} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font