Pregled bibliografske jedinice broj: 1101452
Automatic Evaluation of the Lung Condition of COVID-19 Patients Using X-ray Images and Convolutional Neural Networks
Automatic Evaluation of the Lung Condition of COVID-19 Patients Using X-ray Images and Convolutional Neural Networks // Journal of personalized medicine, 11 (2021), 1; 28, 31 doi:10.3390/jpm11010028 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1101452 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Automatic Evaluation of the Lung Condition of
COVID-19 Patients Using X-ray Images and
Convolutional Neural
Networks
Autori
Lorencin, Ivan ; Baressi Šegota, Sandi ; Anđelić, Nikola ; Blagojević, Anđela ; Šušteršič, Tijana ; Protić, Alen ; Arsenijević, Miloš ; Ćabov, Tomislav ; Filipović, Nenad ; Car, Zlatan
Izvornik
Journal of personalized medicine (2075-4426) 11
(2021), 1;
28, 31
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
AlexNet ; convolutional neural network ; COVID-19 ; ResNet ; VGG-16
Sažetak
COVID-19 represents one of the greatest challenges in modern history. Its impact is most noticeable in the health care system, mostly due to the accelerated and increased influx of patients with a more severe clinical picture. These facts are increasing the pressure on health systems. For this reason, the aim is to automate the process of diagnosis and treatment. The research presented in this article conducted an examination of the possibility of classifying the clinical picture of a patient using X-ray images and convolutional neural networks. The research was conducted on the dataset of 185 images that consists of four classes. Due to a lower amount of images, a data augmentation procedure was performed. In order to define the CNN architecture with highest classification performances, multiple CNNs were designed. Results show that the best classification performances can be achieved if ResNet152 is used. This CNN has achieved AUCmacro and AUCmicro up to 0.94, suggesting the possibility of applying CNN to the classification of the clinical picture of COVID-19 patients using an X-ray image of the lungs. When higher layers are frozen during the training procedure, higher AUCmacro and AUCmicro values are achieved. If ResNet152 is utilized, AUCmacro and AUCmicro values up to 0.96 are achieved if all layers except the last 12 are frozen during the training procedure.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti, Temeljne medicinske znanosti
POVEZANOST RADA
Projekti:
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
Ustanove:
Medicinski fakultet, Rijeka,
Tehnički fakultet, Rijeka,
Klinički bolnički centar Rijeka,
Fakultet dentalne medicine, Rijeka
Profili:
Nenad Filipović
(autor)
Zlatan Car
(autor)
Tomislav Ćabov
(autor)
Nikola Anđelić
(autor)
Sandi Baressi Šegota
(autor)
Alen Protić
(autor)
Ivan Lorencin
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus