Pregled bibliografske jedinice broj: 1101278
Approximation of CDF of non-central chi-square distribution by mean-value theorems for integrals
Approximation of CDF of non-central chi-square distribution by mean-value theorems for integrals // Mathematics, 9 (2021), 2; 129, 12 doi:10.3390/math9020129 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1101278 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Approximation of CDF of non-central chi-square
distribution by mean-value theorems for integrals
Autori
Baricz, Árpád ; Jankov Maširević, Dragana ; Poganj, Tibor
Izvornik
Mathematics (2227-7390) 9
(2021), 2;
129, 12
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Non-central χ² distribution ; Second mean-value theorem for definite integrals ; Modified Bessel function of the first kind ; Marcum Q-function ; Lower incomplete gamma function
Sažetak
The cumulative distribution function of the non-- central chi-square distribution chi_n'^2(lambda) of n degrees of freedom possesses an integral representation. Here we rewrite this integral in terms of lower incomplete gamma function applying two of second mean-value theorems for definite integrals, which are of Bonnet type and Okamura's variant of du Bois-Reymond theorem. Related results are exposed concerning the small argument cases in CDF and their asymptotic behavior nearby the origin.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Tehnologija prometa i transport
POVEZANOST RADA
Ustanove:
Pomorski fakultet, Rijeka,
Sveučilište u Osijeku, Odjel za matematiku
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Zentrallblatt für Mathematik/Mathematical Abstracts