Pregled bibliografske jedinice broj: 1100274
Extended Variable Speed Limit control using Multi-agent Reinforcement Learning
Extended Variable Speed Limit control using Multi-agent Reinforcement Learning // Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC 2020) / Lu, Meng ; Wang, Yibing ; Barth, Matthew (ur.).
Piscataway (NJ): Institute of Electrical and Electronics Engineers (IEEE), 2020. 9294639, 8 doi:10.1109/itsc45102.2020.9294639 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1100274 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Extended Variable Speed Limit control using Multi-agent Reinforcement Learning
Autori
Kušić, Krešimir ; Dusparic, Ivana ; Guériau, Maxime ; Gregurić, Martin ; Ivanjko, Edouard
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC 2020)
/ Lu, Meng ; Wang, Yibing ; Barth, Matthew - Piscataway (NJ) : Institute of Electrical and Electronics Engineers (IEEE), 2020
ISBN
978-1-7281-4149-7
Skup
23rd IEEE International Conference on Intelligent Transportation Systems (ITSC 2020)
Mjesto i datum
Rodos, Grčka, 20.09.2020. - 23.09.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Optimization ; Safety ; Reinforcement learning ; Microscopy ; Time measurement ; Task analysis ; Stability analysis
Sažetak
Variable Speed Limit (VSL) is a traffic control approach that optimises the mainstream traffic on motorways. Reinforcement Learning approach to VSL has been shown to achieve improvements in controlling the mainstream traffic bottleneck on motorways. However, single-agent VSL, applied to a shorter motorway segment, can produce a discontinuity in traffic flow by causing the significant differences in speeds between the uncontrolled upstream flow and the flow affected by VSL. A multi-agent control strategy can be used to overcome these problems by assigning speed limits in multiple upstream motorway sections enabling smoother speed transition. In this paper, we proposed a novel approach to set up multi-agent RLbased VSL by using the W-Learning algorithm (WL- VSL), in which two agents control two segments in the lead up to the congested area. The reward function for each agent is based on the agent’s local performance as well as the downstream bottleneck. WL-VSL is evaluated in a microscopic simulation on two traffic scenarios using dynamic and static traffic demand. We show that WL-VSL outperforms base cases (no control, single agent, and two independent agents) with the improvement of traffic parameters up to 18 %.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Tehnologija prometa i transport
POVEZANOST RADA
Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
Ustanove:
Fakultet prometnih znanosti, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus