Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1099432

Modelling and Prediction of Surface Roughness in CNC Turning Process using Neural Networks


SARIC, Tomislav; VUKELIC, Djordje; SIMUNOVIC, Katica; SVALINA, Ilija; TADIC, Branko; PRICA, Miljana; SIMUNOVIC, Goran
Modelling and Prediction of Surface Roughness in CNC Turning Process using Neural Networks // Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 27 (2020), 6; 1923-1930 doi:10.17559/TV-20200818114207 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1099432 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Modelling and Prediction of Surface Roughness in CNC Turning Process using Neural Networks

Autori
SARIC, Tomislav ; VUKELIC, Djordje ; SIMUNOVIC, Katica ; SVALINA, Ilija ; TADIC, Branko ; PRICA, Miljana ; SIMUNOVIC, Goran

Izvornik
Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku (1330-3651) 27 (2020), 6; 1923-1930

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
CNC Turning ; Neural Networks ; Prediction ; Surface Roughness

Sažetak
The paper presents an approach to solving the problem of modelling and prediction of surface roughness in CNC turning process. In order to solve this problem an experiment was designed. Samples for experimental part of investigation were of dimensions 30 x 350 mm, and the sample material was GJS 500-7. Six cutting inserts were used for the designed experiment as well as variations of cutting speed, feed and depth of cut on CNC lathe DMG Moriseiki - CTX 310 Ecoline. After the conducted experiment, surface roughness of each sample was measured and a data set of 750 instances was formed. For data analysis, the Back- Propagation Neural Network (BPNN) algorithm was used. In modelling different BPNN architectures with characteristic features the results of RMS (Root Mean Square) error were controlled. Specially analysed were the RMS errors realised by different number of neurons in hidden layers. For the BPNN architecture with one hidden layer the architecture (4-8-1) was adopted with RMS error of 3, 37 %. In modelling the BPNN architecture with two hidden layers, a considerable amount of architectures was investigated. The adopted architecture with two hidden layers (4-2-10-1) generated the RMS error of 2, 26 %. The investigation was also directed at the size of the data set and controlling the level of RMS error.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Ustanove:
Strojarski fakultet, Slavonski Brod,
Sveučilište u Slavonskom Brodu

Poveznice na cjeloviti tekst rada:

doi hrcak.srce.hr

Citiraj ovu publikaciju:

SARIC, Tomislav; VUKELIC, Djordje; SIMUNOVIC, Katica; SVALINA, Ilija; TADIC, Branko; PRICA, Miljana; SIMUNOVIC, Goran
Modelling and Prediction of Surface Roughness in CNC Turning Process using Neural Networks // Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 27 (2020), 6; 1923-1930 doi:10.17559/TV-20200818114207 (međunarodna recenzija, članak, znanstveni)
SARIC, T., VUKELIC, D., SIMUNOVIC, K., SVALINA, I., TADIC, B., PRICA, M. & SIMUNOVIC, G. (2020) Modelling and Prediction of Surface Roughness in CNC Turning Process using Neural Networks. Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 27 (6), 1923-1930 doi:10.17559/TV-20200818114207.
@article{article, author = {SARIC, Tomislav and VUKELIC, Djordje and SIMUNOVIC, Katica and SVALINA, Ilija and TADIC, Branko and PRICA, Miljana and SIMUNOVIC, Goran}, year = {2020}, pages = {1923-1930}, DOI = {10.17559/TV-20200818114207}, keywords = {CNC Turning, Neural Networks, Prediction, Surface Roughness}, journal = {Tehni\v{c}ki vjesnik : znanstveno-stru\v{c}ni \v{c}asopis tehni\v{c}kih fakulteta Sveu\v{c}ili\v{s}ta u Osijeku}, doi = {10.17559/TV-20200818114207}, volume = {27}, number = {6}, issn = {1330-3651}, title = {Modelling and Prediction of Surface Roughness in CNC Turning Process using Neural Networks}, keyword = {CNC Turning, Neural Networks, Prediction, Surface Roughness} }
@article{article, author = {SARIC, Tomislav and VUKELIC, Djordje and SIMUNOVIC, Katica and SVALINA, Ilija and TADIC, Branko and PRICA, Miljana and SIMUNOVIC, Goran}, year = {2020}, pages = {1923-1930}, DOI = {10.17559/TV-20200818114207}, keywords = {CNC Turning, Neural Networks, Prediction, Surface Roughness}, journal = {Tehni\v{c}ki vjesnik : znanstveno-stru\v{c}ni \v{c}asopis tehni\v{c}kih fakulteta Sveu\v{c}ili\v{s}ta u Osijeku}, doi = {10.17559/TV-20200818114207}, volume = {27}, number = {6}, issn = {1330-3651}, title = {Modelling and Prediction of Surface Roughness in CNC Turning Process using Neural Networks}, keyword = {CNC Turning, Neural Networks, Prediction, Surface Roughness} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font