Pregled bibliografske jedinice broj: 1099400
Machine learning methods in monitoring operating behaviour of marine two-stroke diesel engine
Machine learning methods in monitoring operating behaviour of marine two-stroke diesel engine // Transport, 35 (2020), 5; 474-485 doi:10.3846/transport.2020.14038 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1099400 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine learning methods in monitoring operating
behaviour of marine two-stroke diesel engine
Autori
Vorkapić, Aleksandar ; Radonja, Radoslav ; Babić, Karlo ; Martinčić-Ipšić, Sanda
Izvornik
Transport (1648-4142) 35
(2020), 5;
474-485
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
energy efficient shipping, propulsion engine, condition based maintenance, sensory data, machine learning, regression estimation, anomaly detection
Sažetak
The aim of this article is to enhance performance monitoring of a two-stroke electronically controlled ship propulsion engine on the operating envelope. This is achieved by setting up a machine learning model capable of monitoring influential operating parameters and predicting the fuel consumption. Model is tested with different machine learning algorithms, namely linear regression, multilayer perceptron, Support Vector Machines (SVM) and Random Forests (RF). Upon verification of modelling framework and analyzing the results in order to improve the prediction accuracy, the best algorithm is selected based on standard evaluation metrics, i.e. Root Mean Square Error (RMSE) and Relative Absolute Error (RAE). Experimental results show that, by taking an adequate combination and processing of relevant sensory data, SVM exhibit the lowest RMSE 7.1032 and RAE 0.5313%. RF achieve the lowest RMSE 22.6137 and RAE 3.8545% in a setting when minimal number of input variables is considered, i.e. cylinder indicated pressures and propulsion engine revolutions. Further, article deals with the detection of anomalies of operating parameters, which enables the evaluation of the propulsion engine condition and the early identification of failures and deterioration. Such a time- dependent, self-adopting anomaly detection model can be used for comparison with the initial condition recorded during the test and sea run or after survey and docking. Finally, we propose a unified model structure, incorporating fuel consumption prediction and anomaly detection model with on-board decision-making process regarding navigation and maintenance.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Tehnologija prometa i transport, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Pomorski fakultet, Rijeka,
Fakultet informatike i digitalnih tehnologija, Rijeka
Profili:
Aleksandar Vorkapić
(autor)
Sanda Martinčić - Ipšić
(autor)
Karlo Babić
(autor)
Radoslav Radonja
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Transportation Research Information Services - TRIS
- EI Compendex