Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1099400

Machine learning methods in monitoring operating behaviour of marine two-stroke diesel engine


Vorkapić, Aleksandar; Radonja, Radoslav; Babić, Karlo; Martinčić-Ipšić, Sanda
Machine learning methods in monitoring operating behaviour of marine two-stroke diesel engine // Transport, 35 (2020), 5; 474-485 doi:10.3846/transport.2020.14038 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1099400 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Machine learning methods in monitoring operating behaviour of marine two-stroke diesel engine

Autori
Vorkapić, Aleksandar ; Radonja, Radoslav ; Babić, Karlo ; Martinčić-Ipšić, Sanda

Izvornik
Transport (1648-4142) 35 (2020), 5; 474-485

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
energy efficient shipping, propulsion engine, condition based maintenance, sensory data, machine learning, regression estimation, anomaly detection

Sažetak
The aim of this article is to enhance performance monitoring of a two-stroke electronically controlled ship propulsion engine on the operating envelope. This is achieved by setting up a machine learning model capable of monitoring influential operating parameters and predicting the fuel consumption. Model is tested with different machine learning algorithms, namely linear regression, multilayer perceptron, Support Vector Machines (SVM) and Random Forests (RF). Upon verification of modelling framework and analyzing the results in order to improve the prediction accuracy, the best algorithm is selected based on standard evaluation metrics, i.e. Root Mean Square Error (RMSE) and Relative Absolute Error (RAE). Experimental results show that, by taking an adequate combination and processing of relevant sensory data, SVM exhibit the lowest RMSE 7.1032 and RAE 0.5313%. RF achieve the lowest RMSE 22.6137 and RAE 3.8545% in a setting when minimal number of input variables is considered, i.e. cylinder indicated pressures and propulsion engine revolutions. Further, article deals with the detection of anomalies of operating parameters, which enables the evaluation of the propulsion engine condition and the early identification of failures and deterioration. Such a time- dependent, self-adopting anomaly detection model can be used for comparison with the initial condition recorded during the test and sea run or after survey and docking. Finally, we propose a unified model structure, incorporating fuel consumption prediction and anomaly detection model with on-board decision-making process regarding navigation and maintenance.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Tehnologija prometa i transport, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Pomorski fakultet, Rijeka,
Fakultet informatike i digitalnih tehnologija, Rijeka

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi journals.vgtu.lt

Citiraj ovu publikaciju:

Vorkapić, Aleksandar; Radonja, Radoslav; Babić, Karlo; Martinčić-Ipšić, Sanda
Machine learning methods in monitoring operating behaviour of marine two-stroke diesel engine // Transport, 35 (2020), 5; 474-485 doi:10.3846/transport.2020.14038 (međunarodna recenzija, članak, znanstveni)
Vorkapić, A., Radonja, R., Babić, K. & Martinčić-Ipšić, S. (2020) Machine learning methods in monitoring operating behaviour of marine two-stroke diesel engine. Transport, 35 (5), 474-485 doi:10.3846/transport.2020.14038.
@article{article, author = {Vorkapi\'{c}, Aleksandar and Radonja, Radoslav and Babi\'{c}, Karlo and Martin\v{c}i\'{c}-Ip\v{s}i\'{c}, Sanda}, year = {2020}, pages = {474-485}, DOI = {10.3846/transport.2020.14038}, keywords = {energy efficient shipping, propulsion engine, condition based maintenance, sensory data, machine learning, regression estimation, anomaly detection}, journal = {Transport}, doi = {10.3846/transport.2020.14038}, volume = {35}, number = {5}, issn = {1648-4142}, title = {Machine learning methods in monitoring operating behaviour of marine two-stroke diesel engine}, keyword = {energy efficient shipping, propulsion engine, condition based maintenance, sensory data, machine learning, regression estimation, anomaly detection} }
@article{article, author = {Vorkapi\'{c}, Aleksandar and Radonja, Radoslav and Babi\'{c}, Karlo and Martin\v{c}i\'{c}-Ip\v{s}i\'{c}, Sanda}, year = {2020}, pages = {474-485}, DOI = {10.3846/transport.2020.14038}, keywords = {energy efficient shipping, propulsion engine, condition based maintenance, sensory data, machine learning, regression estimation, anomaly detection}, journal = {Transport}, doi = {10.3846/transport.2020.14038}, volume = {35}, number = {5}, issn = {1648-4142}, title = {Machine learning methods in monitoring operating behaviour of marine two-stroke diesel engine}, keyword = {energy efficient shipping, propulsion engine, condition based maintenance, sensory data, machine learning, regression estimation, anomaly detection} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Transportation Research Information Services - TRIS
  • EI Compendex


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font