Pregled bibliografske jedinice broj: 1098295
Revisiting IRKA: Connections with Pole Placement and Backward Stability
Revisiting IRKA: Connections with Pole Placement and Backward Stability // Vietnam journal of mathematics, 48 (2020), 963-985 doi:10.1007/s10013-020-00424-0 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1098295 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Revisiting IRKA: Connections with Pole Placement
and Backward Stability
Autori
Beattie, Christopher ; Drmač, Zlatko ; Gugercin, Serkan
Izvornik
Vietnam journal of mathematics (2305-221X) 48
(2020);
963-985
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Interpolation ; Model reduction ; H2-optimality ; Pole placement ; Backward stability
Sažetak
The iterative rational Krylov algorithm (IRKA) is a popular approach for producing locally optimal reduced-order H2-approximations to linear time-invariant (LTI) dynamical systems. Overall, IRKA has seen significant practical success in computing high fidelity (locally) optimal reduced models and has been successfully applied in a variety of large-scale settings. Moreover, IRKA has provided a foundation for recent extensions to the systematic model reduction of bilinear and nonlinear dynamical systems. Convergence of the basic IRKA iteration is generally observed to be rapid—but not always ; and despite the simplicity of the iteration, its convergence behavior is remarkably complex and not well understood aside from a few special cases. The overall effectiveness and computational robustness of the basic IRKA iteration is surprising since its algorithmic goals are very similar to a pole assignment problem, which can be notoriously ill-conditioned. We investigate this connection here and discuss a variety of nice properties of the IRKA iteration that are revealed when the iteration is framed with respect to a primitive basis. We find that the connection with pole assignment suggests refinements to the basic algorithm that can improve convergence behavior, leading also to new choices for termination criteria that assure backward stability.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-6268 - Stohastičke aproksimacije malog ranga i primjene na parametarski ovisne probleme (RandLRAP) (Grubišić, Luka, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Zlatko Drmač
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts